SAGA C++ Ole Weidner, CCT/LSU
Hartmut Kaiser, CCT/LSU

Version: 0.3 September 2, 2009

SAGA C+H+ Installation Manual

Abstract

This document describes the installation and configuration process for the SAGA
C++ Core Libraries and Adaptors. This document should always reflect the lat-
est changes and additions made to the build and installation system. However,
please make sure to read the README file provided with each SAGA distribution
for last minute changes and informations.

Please help us to improve the quality of SAGA and file a bug report
if you have encountered any problems with the build system. Our
bug-tracking system can be found at:

http://saga.cct.lsu.edu/cpp/dev/

Copyright Notice

Copyright © CCT / Louisiana State Univeristy(2008). All Rights Reserved.

SAGA C++ September 2, 2009
Contents

I Overview] 4

2__Platform Notes | 5

2.1 Microsoft Windows|o oo 5

2.2 IBMAIXBI] o e 5

13 Requirements | 6

............................... 6

3.2 Engine Requirements|. 6

3.3 Language Binding Requirements| 6

3.4 Adaptor Requirements| o000 7

B.4.1 Local Adaptors] o 7

13.4.2 Globus Toolkit Adaptors| 8

83.4.3 OMII GridSAM Adaptor] 8

B.4.4 Condor Adaptor| 9

4 Installing SAGA from Source | 10

4.1 Getting the Sources| 10

4.2 Build System Structure| 000 10

4.3 Building SAGA - The Simple Way| 11

4.3.1 Configure All Components|. 11

4.3.2 Build and Install all Components| 12

4.3.3 Setup the Environment| 12

4.3.4 Setup the Python Bindings| 13

4.3.5 Running the Tests| 13

saga-users@cct.lsu.edu 2

SAGA C++ September 2, 2009

4.4 Configuring the SAGA Engine] 14
4.4.1 Ini File Syntax| 14
4.4.2 SAGA configuration files|. 15
443 SAGATitdo oo 16

saga-users@cct.lsu.edu 3

SAGA C++ Overview September 2, 2009

1 Overview

SAGA consists of three different component types: (1) the Engine with its
Packages and the native C++ Interface, (2) the Language Bindings (Python,
C), and (3) the Adaptors (Local, GT4, ...). All components are part of the
source distribution. The Engine provides the core functionality which leads to
the following dependencies:

e Language Bindings require the SAGA Engine
e Adaptors require the SAGA Engine

This means that it is always required to build and install the SAGA Engine.
It is, for example not possible to build and install just the Python language
bindings without having the SAGA Engine built before. On the other hand,
just building the Engine without any middleware Adaptors is quite useless ;-)

e —
TrTr

Local System (Remote) GridSAM (Remote) GT4 (Remote) Condor
Webservices Services Pool

The SAGA build system takes this into account and configures and builds all
SAGA components which are supported on the target system in the right order.
However, it is possible to configure and build each component individually. The
following sections describe both, how to build all components in one batch as
well as how to build each component individually.

saga-users@cct.lsu.edu 4

SAGA C++ Platform Notes September 2, 2009

2 Platform Notes

One of the major design goals of the SAGA C++ implementation was to cre-
ate platform-independent and portable API which is crucial in heterogeneous
distributed environments like Computational Grids. Although it is possible to
build SAGA on any operating system there are limitations and particularities
on certain platforms. Furthermore, some of the SAGA Adaptors require 3rd
party libraries that may not be available on all supported platforms.

2.1 Microsoft Windows

You can build SAGA on Microsoft Windows using Microsoft’s Visual C/C++
compiler. However, the make-based build system described in Section] will not
work on Windows unless you install the Cygwin environment. The easiest way
to build SAGA on Windows is using the IDE project file for Microsoft Visual
Studio.

2.2 1IBM AIX 5L

SAGA supports both, the GNU gcc as well as the IBM XI1C compiler, although
we strongly suggest to use gcc. Building 64bit version of SAGA doesn’t work
with any of the compilers due to some yet unsolved linkage issue.

The make implementation that comes with AIX does NOT work with the SAGA
build-system. Please install and use GNU make. It’s part of the free AIX Toolbox
for Linuxz Applications which can be found here: http://www-03.ibm.com/syst
ems/p/os/aix/linux/index.html

saga-users@cct.lsu.edu)

SAGA C++ Requirements September 2, 2009

3 Requirements

In order to build the different SAGA components from source, a couple of ex-
ternal libraries are required. We’ve tried to keep the requirement for the Engine
down to a bare minimum, but some of the middleware Adaptors and Language
Bindings require additional external libraries and tools.

3.1 Compilers

Although the SAGA build-system should support all major C++ compilers, we
highly recommend the use of the GNU gcc which should be available on any
platform. The following table gives an overview of compilers and versions that
are known to work with SAGA:

Compiler Minimum Version Notes
GNU g++ > 3.4.6 -
IBM x1C++ > 8.0 -
MS Visual C++ >17.0 -

3.2 Engine Requirements

The SAGA Engine makes extensive use of the Open Source Boost C++ Libararies,
namely the Boost thread, iostreams, serialization, filesystem and regex
packages. Having Boost installed is the only mandatory requirement for build-
ing any of the SAGA components.

Requirements Version Notes

Boost C++ Libraries > 1.34.1 http://www.boost.org

3.3 Language Binding Requirements

Currently, we provide language bindings for C and Python. The C language
binding doesn’t need any external requirements except a working C/C++ com-
piler. The Python language binding requires a recent version of Python and

saga-users@cct.lsu.edu 6

SAGA C++ Requirements September 2, 2009

the Python interoperability libraries that come with Boost. Since the Python
bindings require decent threading support, we require at least Python 2.4.

NOTE: If youre building your own Python libraries, make sure that build
them using the --enable-shared flag before you build Boost or SAGA.

Requirements Version Notes
Boost C++ Libraries > 1.34.1 all
Python > 2.4 http://www.python.org

3.4 Adaptor Requirements

3.4.1 Local Adaptors

Local Adaptors

Boost.
Process

Postgre
SQL

Boost.
Filesystem

Postgre .
SQLIte

Local Disc SQL Database Local Process SQL Database

The local adaptor set uses the Boost.filesytem to access local filesystems and
Boost.process to spawn and control local processes (jobs). The Replica and
Advert adaptors use the PostgreSQL or SQLite3 client libraries to acces local or
remote PostgreSQL or SQLite databases. Only one of the libraries is required
to build the adaptors. However, if both are found, the adaptors gets built with
support for both databases.

saga-users@cct.lsu.edu 7

SAGA C++ Requirements September 2, 2009

Requirements Version Package(s)

Boost C++ Libraries > 1.34.1 all

SQLite3 > 3.3 Advert & Replica
PostgreSQL > 8.0 Advert & Replica

3.4.2 Globus Toolkit Adaptors

GridFTP C

Globus Adaptors
RLS C Client
Client Libraries Libraries

GRAM2 C
Client Libraries

(Remote) GridFTP (Remote) RLS (Remote) GRAM2
Service Service Service

In order to build the Globus Toolkit adaptors, you need a local installation of
the Globus C header and client library files. It is not required to have any
of the local Globus services configured or running. The adaptors use the Globus
GridFTP, GRAM2, RLS and their dependent (XIO, etc.) client libraries. Note
that the developer packages for Globus need to be installed, in order to have
the header files available. Alternatively, Globus can be installed from source —
that will also make the Globus header files available.

Requirements Version Package(s)
Boost C++ Libraries > 1.34.1 all
Globus Toolkit >3.21 all

3.4.3 OMII GridSAM Adaptor
The OMII GridSAM adaptor uses the SOAP protocol to communicate with a
local or remote GridSAM Web-Service.

The adaptor comes with its own version of gSOAP and pre-generated WSDL
stubs. This means that the adaptor doesn’t have any external requirements

saga-users@cct.lsu.edu 8

SAGA C++ Requirements September 2, 2009

gSOAP +
GridSAM

(Remote) GridSAM
Web Service

except (Open)SSL and libCrypt (for HTTPS/encryption support) which should
be available on any system.

Requirements Version Package(s)
Boost C++ Libraries > 1.34.1 all
(Open)SSL > any 7?7 all
libCrypt > any 77 all

3.4.4 Condor Adaptor

The Condor adaptor communicates with the Condor command line tools — thus,
no client library is required, but a working a configured condor client installa-
tion is expected to be available. The environment CONDOR_LOCATION is evalu-
ated by configure to find that location. The variable typically used by condor,
CONDOR_CONFIG, is also evaluated when CONDOR_LOCATION is not present.

saga-users@cct.lsu.edu 9

SAGA C++ Installing SAGA from Source September 2, 2009

Requirements Version Package(s)
Boost C++ Libraries > 1.34.1 all
Condor client installation > any 77 all

4 Installing SAGA from Source

Now that you have checked the prerequisistes for the different SAGA packages
in section 3, you can go on and build SAGA from source.

4.1 Getting the Sources

The SAGA sources are available from http://sourceforge.net/projects/saga in
gzip, bzip2 and zip format. All archives contain exactly the same files.

4.2 Build System Structure

The SAGA build-system is based on autoconf and configure. We require the
use of GNU make to build SAGA. Please also check the Platform Notes (section
2) for known issues with default make installations (e.g. on AIX).

./configure && make

./configure
/ nake 1/bindings/saga/c |

Job ./configure
File nake 1 /bindings/saga/Python |

./configure

make 1 /adaptors/default |
./configure

make 1 /adaptors/OMIl |
./configure

make /adaptors/globus4-preWs |

The SAGA source-tree provides seperate build-systems for the Engine & Pack-
ages, for the different Language Bindings, and for the Adaptors. However, the
top-level ./configure and Makefiles try to recursively configure and (if suc-
cessful) build all available SAGA components.

saga-users@cct.lsu.edu 10

SAGA C++ Installing SAGA from Source September 2, 2009

If you want to configure and build any component separately, you can call
./configure and make directly in the component’s subdirectory.

4.3 Building SAGA - The Simple Way

This section assumes that you have installed all prerequesites for the components
you want to install. In case something is missing, the build-system will NOT
necessarily fail but rather skip the component.

4.3.1 Configure All Components

As described in section 4.2, the top-level configure script recursively calls the
configure scripts for all SAGA components:

> ./configure --prefix=/saga/install/path

or to be consistent:

> ./configure --prefix=$SAGA_LOCATION

The build-system tries to find required libraries like Boost in the system’s de-
fault installation locations (e.g. /usr, /usr/local) on Linux). In case you
have installed them somewhere else, you have to provide ./configure with the
appropriate paths using the following arguments:

o ——with-boost=DIR Path to Boost installation

There are lots of other parameters and environment variables that will affect
the behaviour of configure. For a complete overview, type:

> ./configure --help

While configure runs, you will see the configuration summaries for each SAGA
component. The summary will tell you if all requirements are met in order to
build the component and if not, which requirements are missing. Here is an
example output of the Python bindings summary:

saga-users@cct.lsu.edu 11

SAGA C++ Installing SAGA from Source September 2, 2009

configure:

configure: SAGA Python BINDINGS - Configuration Summary
configure:

configure:

configure: SAGA Source : /tmp/trunk
configure: SAGA Location

configure: Install Prefix : /usr/local
configure: Python Package Path : lib/python2.5/site-packages/saga
configure:

configure: Using SAGA from : /tmp/trunk (source)
configure:

configure: Python Found : yes

configure: Python Version : 2.5

configure: Python Location : /usr

4.3.2 Build and Install all Components

After you have successfully configured the sources, it’s time to build them.
Similar to the top-level configure, the top-level Makefile will recursively build
all configured components:

> make && make install

Once make install is done, you will find your freshly built SAGA in the di-
rectory you provided with —-prefix.

On multiprocessor or multicore machines, SAGA can be build with the -j<n>
option, with <n> specifying the maximal number of parallel build processes.

4.3.3 Setup the Environment

The SAGA Engine needs to know where to look for its configuration files in
order to configure and load the middleware adaptors. By default, the installation
prefix is used to load these configuration files. The easiest way to tell the Engine
where to find alternative settings is by setting the $SAGA_LOCATION variable (e.g.
in your .bash_profile) to a SAGA installation directory (set via the —--prefix
option during configure). More details on SAGA runtime configurations can be
found in section 44l

In case the installation directory is not one of the standard directories (/usr/
and /usr/local on Linux), you should set the $LD_LIBRARY_PATH (on Mac OS:
$DYLD_LIBRARY PATH) as well:

saga-users@cct.lsu.edu 12

SAGA C++ Installing SAGA from Source September 2, 2009

> export SAGA_LOCATION=/saga/install/path
> export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$SAGA_LOCATION/1ib

4.3.4 Setup the Python Bindings

If you want to use the Python bindings, you have to add the installation direc-
tory of the language bindings to your $PYTHONPATH:

> export PYTHONPATH=$PYTHONPATH:$SAGA_LOCATION/1ib/python2.5/site-packages/

You can test the Python bindings using the Python interpreter from the com-
mandline. The following set of commands should display the interface definition
for the SAGA file package:

> python

Python 2.5.1 (r251:54863, Jan 17 2008, 19:35:17)

[GCC 4.0.1 (Apple Inc. build 5465)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import saga

>>> help(saga.file)

4.3.5 Running the Tests

NOTE: Make sure you have configured your $SAGA_LOCATION and your library
path as described in section 4.3.3 - otherwise the test won’t run!

SAGA comes with a more or less complete set of unit tests for the packages,
the engine and for some of the adaptors. You can run them directly from the
source root using the build-system command:

> make check

Please help us to improve the quality of SAGA and file a bug report if you
have encountered any problems with the tests. Our bug-tracking system can be
found at: http://saga.cct.lsu.edu/cpp/dev/

saga-users@cct.lsu.edu 13

SAGA C++ Installing SAGA from Source September 2, 2009

4.4 Configuring the SAGA Engine

The SAGA engine module is responsible for dispatching any APT call executed
by an application to a corresponding CPI function (CPI: capability provider
interface). The CPI functions are implemented by adaptors, generally, one
adaptor for each different (grid) service.

The selection of an appropriate adaptor is done based on a capability registry
maintained by the SAGA engine. This registry contains entries for all CPI
functions implemented by all adaptors known to the engine. The registry is
filled at startup by the adaptors, generating the corresponding CPI function
descriptors and registering these with the engine.

The SAGA engine uses a system of configuration files to discover the adaptors
to load. Each execution environment should provide at least one main config-
uration file (most of the time called saga.ini) containing a list of directories
to scan for the adaptor specific configurations files. This main configuration file
should specify at least one directory, specifying where to look for these adaptor
configuration files (ini files):

[info]
ini_path = ${SAGA_LOCATION}/share/saga/

4.4.1 Ini File Syntax

Ini files are structured by sections, such as [sagal, [saga.adaptors], [saga.adaptors.default]
etc. In these sections, which form a hierarchy, keys can be assigned arbitrary
values

[section.subsection]
key = value

For any value (right hand side of an ’=’) in any of the configuration files the
notation ${SOME_ENV} allows to use values currently defined by SOME_ENV en-
vironment variable. Similarly, $ [section.key] can be used to refer to an ini
variable defined elsewhere. Also, a fallback can be specified if some key is not
available

[section.subsection]
shell = ${SHELL}

saga-users@cct.lsu.edu 14

SAGA C++ Installing SAGA from Source September 2, 2009

check = $[section.subsection.shell]
verbose ${SAGA_VERBOSE:info} # use ’info’ as fallback

4.4.2 SAGA configuration files

First of all: if you installed a SAGA engine and a set of adaptors from sources,
or from a packaged binary, everything should be configured so that no addi-
tional configuration steps are required. The following guidelines are for those
cases, where (a) a system administrator wants to configure SAGA for a specific
invironment, or (b) a SAGA user wishes or needs to overwrite the default or
system settings.

The SAGA engine searches for the main configuration file at the following loca-
tions:

o A file /etc/saga.ini (non Windows platforms only)

A file $SAGA_LOCATION/share/saga/saga.ini

A file $HOME/ . saga.ini
e A file $PWD/.saga.ini
A file $SAGA_INI as defined in the environment

All found info.ini_path keys in these files are concatinated and the corre-
sponding directories are scanned for adaptor configuration files in the order as
they appeared. The info.ini_path key may contain a list of directories, sepa-
rated by colons (on Windows the separator character is a semicolon). Any file
having the file extension .ini in one of the listed directories will be treated as
an adaptor configuration file.

Each of the adaptor configuration files can contain the following entries:

[saga.adaptors.<adaptor_name>]
name = <adaptor_instance_name>
path = <adaptor_path>
enabled = true
where

e <adaptor_name> should be replaced by some adaptor specific name used
to identify the adaptor module.

saga-users@cct.lsu.edu 15

SAGA C++ Installing SAGA from Source September 2, 2009

e <adaptor_instance_name> should be replaced by some unique name iden-
tifying the adaptor instance to be loaded

e <adaptor_path> is either the full path of the adaptor module (shared li-
brary) to load or it should point to the directory, where the adaptor module
is located. In the later case the name of the adaptor module should con-
form to the naming convention: libsaga adaptor_<adaptor_name>.so
(on different operating systems the file extension might vary).

e enabled is a bool which determines if the adaptor is considered for loading.
Valid values are true and false.

All keys apart from name are optional, and have fallbacks consistent with the
original installation configuration.

As an example, the simplest possible adaptor configuration file for a default_file
adaptor might look as follows:

saga.adaptors.default_file]
name = default_file

Below, the default saga.ini is listed completely.

agal

saga install root, points to what is set in the environment, as
SAGA_LOCATION, or use the configure time prefix as fallback.
location = ${SAGA_LOCATION:/Users/merzky/links/saga/install/trunk}

where to find adaptor ini files
ini_path = $[saga.location]/share/saga/

All adaptor and user ini files should refer to $[saga.location] when refering
to the saga installation root, as that evaluates $SAGA_LOCATION, and provides a
sensble fallback, the installation prefix. The installation prefix is also hardcoded
in the 1ibsaga_engine, so the engine should be able to find saga.ini, and thus
the adaptor inis, even when SAGA_LOCATION is not set in the environment.

4.4.3 SAGA Lite

By default, the above procedure creates a set of shared libraries, one for the
SAGA engine (1ibsaga_engine), and a number of SAGA packages (1ibsaga_package_abc).
Also, the adaptor libraries are created as shared libs (1ibsaga_adaptor_xyz).

saga-users@cct.lsu.edu 16

SAGA C++ Installing SAGA from Source September 2, 2009

Additionally, a libsaga_lite library is created, which combines all of the
above libraries into a single library, thus simplifying deployment, application
linkage, and runtime setup for SAGA (more details, see programming manual).
The set of adaptors compiled into the Lite version is determined by the file
dynamic_adaptor.list in the lite/ subdirectory. That file is created by run-
ning make there. For changing that list, run make once, then edit that file, and
run make again to create the correct library setugl}

IThat procedure will be simplified in the future.

saga-users@cct.lsu.edu 17

	Overview
	Platform Notes
	Microsoft Windows
	IBM AIX 5L

	Requirements
	Compilers
	Engine Requirements
	Language Binding Requirements
	Adaptor Requirements
	Local Adaptors
	Globus Toolkit Adaptors
	OMII GridSAM Adaptor
	Condor Adaptor

	Installing SAGA from Source
	Getting the Sources
	Build System Structure
	Building SAGA - The Simple Way
	Configure All Components
	Build and Install all Components
	Setup the Environment
	Setup the Python Bindings
	Running the Tests

	Configuring the SAGA Engine
	Ini File Syntax
	SAGA configuration files
	SAGA Lite

