
COMP Superscalar

COMPSs at BSC
MareNostrum 3 Manual

Version: 1.3

November 3, 2015

This manual only provides information about the COMPSs usage at MareNostrum.
Specifically, it details the available COMPSs modules, how to load them and how to cre-
ate and track COMPSs jobs.

If you want to install COMPSs on your local machine please refer to the COMPSs
Installation Manual available at our webpage http://compss.bsc.es.

For further information about the application’s execution please refer to the COMPSs
User Manual: Application execution guide available at http://compss.bsc.es .

For further information about the application’s development please refer to the COMPSs
User Manual: Application development guide available at http://compss.bsc.es/ .

For full COMPSs example application (codes, execution commands, results, logs, etc.)
please refer to the COMPSs Sample Applications available at http://compss.bsc.es/

.

i

http://compss.bsc.es
http://compss.bsc.es
http://compss.bsc.es/
http://compss.bsc.es/

Contents

1 COMP Superscalar (COMPSs) 1

2 COMPSs Modules 2
2.1 Available modules . 2
2.2 Configuration . 2

3 COMPSs Jobs 4
3.1 Submiting COMPSs jobs . 4
3.2 Tracking COMPSs jobs . 6

4 Enabling COMPSs Monitor 7
4.1 Configuration . 7
4.2 Execution . 7

ii

1 COMP Superscalar (COMPSs)

COMP Superscalar (COMPSs) is a programming model which aims to ease the develop-
ment of applications for distributed infrastructures, such as Clusters, Grids and Clouds.
COMP Superscalar also features a runtime system that exploits the inherent parallelism
of applications at execution time.

For the sake of programming productivity, the COMPSs model has four key charac-
teristics:

• Sequential programming: COMPSs programmers do not need to deal with the
typical duties of parallelization and distribution, such as thread creation and syn-
chronization, data distribution, messaging or fault tolerance. Instead, the model
is based on sequential programming, which makes it appealing to users that either
lack parallel programming expertise or are looking for better programmability.

• Infrastructure unaware: COMPSs offers a model that abstracts the application
from the underlying distributed infrastructure. Hence, COMPSs programs do not
include any detail that could tie them to a particular platform, like deployment or
resource management. This makes applications portable between infrastructures
with diverse characteristics.

• Standard programming languages: COMPSs is based on the popular program-
ming language Java, but also offers language bindings for Python and C/C++ ap-
plications. This facilitates the learning of the model, since programmers can reuse
most of their previous knowledge.

• No APIs: In the case of COMPSs applications in Java, the model does not require
to use any special API call, pragma or construct in the application; everything is
pure standard Java syntax and libraries. With regard the Python and C/C++
bindings, a small set of API calls should be used on the COMPSs applications.

1

2 COMPSs Modules

2.1 Available modules

COMPSs is configured in MareNostrum (MN3) as a Linux Module. Type module available
COMPSs to list the available COMPSs modules through Linux Module configuration and
module load COMPSs/ < version > to load it.

$ module available COMPSs

---------- /apps/modules/modulefiles/tools ----------

COMPSs /0.0

COMPSs /0.1

COMPSs /0.2 _Nested

COMPSs /1.1.2 _gpfs

COMPSs /1.1.2 _scratch

COMPSs /1.2

COMPSs /1.3

COMPSs/release(default)

COMPSs/trunk

$ module load COMPSs/release

load java /1.7.0 u55 (PATH , MANPATH , JAVA_HOME , JAVA_ROOT , JAVA_BINDIR ,

SDK_HOME , JDK_HOME , JRE_HOME)

load MKL /11.0.1 (LD_LIBRARY_PATH)

load PYTHON /2.7.3 (PATH , MANPATH , LD_LIBRARY_PATH , C_INCLUDE_PATH)

load COMPSs/release (PATH , MANPATH , IT_HOME)

The following command can be run to check if the correct COMPSs version has been
loaded:

$ runcompss --version

COMPSs version 1.3

2.2 Configuration

The COMPSs module contains all the COMPSs dependencies, including Java, Python
and MKL. Modifying any of these dependencies can cause execution failures and thus, we
do not recomend to change them. Before running any COMPSs job please check your
environment and, if needed, comment out any line inside the .bashrc file loading custom
COMPSs, Java, Python and/or MKL modules.

The COMPSs module needs to be loaded in all the nodes that will run COMPSs jobs.
Consequently, the module load must be included in your .bashrc file. To do so, please
run the following command with the corresponding COMPSs version:

$ cat "module load COMPSs/release" >> ~/. bashrc

Log out and back in again to check that the file has been correctly edited. The next
listing shows an example of the output generated by well loaded COMPSs installation.

2

$ exit

$ ssh USER@mn1.bsc.es

load java /1.7.0 u55 (PATH , MANPATH , JAVA_HOME , JAVA_ROOT , JAVA_BINDIR ,

SDK_HOME , JDK_HOME , JRE_HOME)

load MKL /11.0.1 (LD_LIBRARY_PATH)

load PYTHON /2.7.3 (PATH , MANPATH , LD_LIBRARY_PATH , C_INCLUDE_PATH)

load COMPSs/trunk (PATH , MANPATH , IT_HOME)

$ runcompss --version

COMPSs version 1.3

Please remember that COMPSs runs in several nodes and your current
enviroment is not exported to them. Thus, all the needed environment

variables must be loaded through the .bashrc file.

3

3 COMPSs Jobs

3.1 Submiting COMPSs jobs

COMPSs jobs can be easily submited by running the enqueue compss command. This
command allows to configure any runcompss option and some particular queue options
such as the queue system, the number of nodes, the wallclock time, the master working
directory, the workers working directory and number of tasks per node.

Next, we provide detailed information about the enqueue compss command:

$ enqueue_compss --help

Usage: /apps/COMPSs /1.3/ Runtime/scripts/user/enqueue_compss

[queue_system_options] [COMPSs_options]

application_name application_arguments

* Options:

General:

--help , -h Print this help message

Queue system configuration:

- -exec_time=<minutes > Expected execution time of

the application (in minutes)

Default: 10

- -num_nodes=<int > Number of nodes to use

Default: 2

- -num_switches=<int > Maximum number of different switches.

Select 0 for no restrictions.

Maximum nodes per switch: 18

Only available for at least 4 nodes.

Default: 0

- -queue_system=<name > Queue system to use: lsf | pbs | slurm

Default: lsf

- -queue=<name > Queue name to submit the job.

Depends on the queue system.

For example (MN3): bsc_cs | bsc_debug

| debug | interactive

Default: default

- -job_dependency=<jobID > Postpone job execution until the job

dependency has ended.

Default: None

- -tasks_per_node=<int > Maximum number of simultaneous

tasks running on a node

Default: 16

- -master_working_dir=<path > Working directory of the application

Default: .

- -worker_working_dir=<name > Worker directory. Use: scratch | gpfs

Default: scratch

- -tasks_in_master=<int > Maximum number of tasks that the master

node can run as worker. Cannot exceed

tasks_per_node.

Default: 0

- -network=<name > Communication network for transfers:

default | ethernet | infiniband | data.

Default: infiniband

4

Runcompss delegated parameters:

Tools enablers:

- -graph=<bool >, - -graph , -g Generation of the complete graph (true/false)

When no value is provided it is set to true

Default: false

- -tracing=<bool >, - -tracing , -t Generation of traces (true/false)

When no value is provided it is set to true

Default: false

- -monitoring=<int >, - -monitoring , -m Period between monitoring samples

(milliseconds)

When no value is provided it is set to 2000

Default: 0

Runtime configuration options:

- -project=<path > Path to the project XML file

Default: /gpfs/apps/MN3/COMPSs /1.3/ Runtime/

configuration/xml/projects/project.xml

- -resources=<path > Path to the resources XML file

Default: /gpfs/apps/MN3/COMPSs /1.3/ Runtime/

configuration/xml/resources/resources.xml

- -lang=<name > Language of the application (java/c/python)

Default: java

- -log_level=<level >, - -debug , -d Set the debug level: off | info | debug

Default: off

Advanced options:

- -comm=<path > Class that implements the adaptor

for communications

Supported adaptors:

integratedtoolkit.nio.master.NIOAdaptor |

integratedtoolkit.gat.master.GATAdaptor

Default:

integratedtoolkit.nio.master.NIOAdaptor

- -library_path=<path > Non -standard directories to search

for libraries (e.g. Java JVM library ,

Python library , C binding library)

Default: Working Directory

- -classpath=<path > Path for the application classes / modules

Default: Working Directory

- -task_count=<int > Only for C/Python Bindings. Maximum number

of different functions/methods , invoked

from the application , that have been

selected as tasks

Default: 50

- -uuid=<int > Preset an application UUID

Default: Automatic random generation

- -PyObject_conversion=<bool > Only for Python Binding. Enable the object

conversion to string when possible

(true/false).

Default: false

* Application name:

For Java applications: Fully qualified name of the application

For C applications: Path to the master binary

For Python applications: Path to the .py file containing the main program

* Application arguments:

Command line arguments to pass to the application. Can be empty.

5

3.2 Tracking COMPSs jobs

When submitting a COMPSs job a temporal file will be created storing the job informa-
tion. For example:

$ enqueue_compss \

--exec_time =15 \

--num_nodes =3 \

--queue_system=lsf \

--tasks_per_node =16 \

--master_working_dir =. \

--worker_working_dir=gpfs \

--lang=python \

--log_level=debug \

<APP > <APP_PARAMETERS >

Num Nodes: 3

Tasks per Node: 16

Tasks in Master :0

Master WD: .

Worker WD: gpfs

Exec -Time: 00:15

Network: default

Library Path: .

To COMPSs: --lang=python --log_level=debug <APP > <APP_PARAMETERS >

Temp submit script is: /scratch/tmp/tmp.YPQKths559

$ cat /scratch/tmp/tmp.YPQKths559

#!/bin/bash

#

#BSUB -cwd .

#BSUB -oo compss_3_%J.out

#BSUB -eo compss_3_%J.err

#BSUB -n 3

#BSUB -R"span[ptile =1]"

#BSUB -J COMPSs

#BSUB -W 00:15

...

In order to trac the jobs state users can run the following command:

$ bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

XXXX bscXX PEND XX login1 XX COMPSs Month Day Hour

The specific COMPSs logs are stored under the /.COMPSs/ folder; saved as a local
runcompss execution. For further details please check COMPSs User Manual: Application
Execution available at our webpage http://compss.bsc.es .

6

http://compss.bsc.es

4 Enabling COMPSs Monitor

4.1 Configuration

As MareNostrum nodes are connection restricted, the better way to enable the COMPSs
Monitor is from the users local machine. To do so please install the following packages:

• COMPSs Runtime

• COMPSs Monitor

• sshfs

For further details about the COMPSs packages installation and configuration please
refer to the COMPSs Installation Manual available at our webpage http://compss.bsc.
es . If you are not willing to install COMPSs in your local machine please consider to
download our Virtual Machine available at our webpage.

Once the packages have been installed and configured, users need to mount the
sshfs directory as follows (MN USER stands for your MareNostrum user and the TAR-
GET LOCAL FOLDER to the local folder where you wish to deploy the MareNostrum
files):

compss@bsc :~$ scp $HOME /.ssh/id_dsa.pub ${MN_USER}@mn1.bsc.es:~/ id_dsa_local.pub

compss@bsc :~$ ssh MN_USER@mn1.bsc.es

"cat ~/ id_dsa_local.pub >> ~/.ssh/authorized_keys;

rm ~/ id_dsa_local.pub"

compss@bsc :~$ mkdir -p TARGET_LOCAL_FOLDER /. COMPSs

compss@bsc :~$ sshfs -o IdentityFile=$HOME/.ssh/id_dsa -o allow_other

MN_USER@mn1.bsc.es:~/. COMPSs

TARGET_LOCAL_FOLDER /. COMPSs

Whenever you wish to unmount the sshfs directory please run:

compss@bsc :~$ sudo umount TARGET_LOCAL_FOLDER /. COMPSs

4.2 Execution

Access the COMPSs Monitor through its webpage (http://localhost:8080/compss-monitor
by default) and log in with the TARGET LOCAL FOLDER to enable the COMPSs Mon-
itor for MareNostrum.

7

http://compss.bsc.es
http://compss.bsc.es
http://localhost:8080/compss-monitor

Please remember that to enable all the COMPSs Monitor features
applications must be ran with the -m flag. For further information

please check the COMPSs User Manual: Application Execution
available at our webpage http://compss.bsc.es .

Figure 1 illustrates how to login and Figure 2 shows the COMPSs Monitor main page
for a MareNostrum application.

Figure 1: COMPSs Monitor login for MareNostrum

8

http://compss.bsc.es

Figure 2: COMPSs Monitor main page for a test application at MareNostrum

9

Please find more details on the COMPSs framework at

http://compss.bsc.es

10

http://compss.bsc.es

	COMP Superscalar (COMPSs)
	COMPSs Modules
	Available modules
	Configuration

	COMPSs Jobs
	Submiting COMPSs jobs
	Tracking COMPSs jobs

	Enabling COMPSs Monitor
	Configuration
	Execution

