User-Friendly and Reliable Grid Computing
Based on Imperfect Middleware

Rob V. van Nieuwpoort, Thilo Kielmann and Henri E. Bal
Vrije Universiteit Amsterdam
De Boelelaan 1081, 1081 HV
Amsterdam, The Netherlands
rob, kielmann, bal @cs.vu.nl
www.cs.vu.nl/ibis

ABSTRACT

Writing grid applications is hard. First, interfaces tostiig grid
middleware often are too low-level for application prograers
who are domain experts rather than computer scientistsonSec
grid APIs tend to evolve too quickly for applications to fol.
Third, failures and configuration incompatibilities reiuapplica-
tions to use different solutions to the same problem, depgnuh
the actual sites in use.

This paper describes the Java Grid Application Toolkit &Jav
GAT) that provides digh-leve] middleware-independemindsite-
independeninterface to the grid. The JavaGAT usessted excep-
tions andintelligent dispatchingof method invocations to handle
errors and to automatically select suitable grid middleniarple-
mentations for requested operations. The JavaGadaptor writ-
ing frameworksimplifies the implementation of interfaces to new
middleware releases by combining nested exceptions aedi-int
gent dispatching with rich default functionality. The maagpli-
cations and middleware adaptors that have been provideirioly t
party developers indicate the viability of our approach.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; D.2.6 $oftware Engineering: Programming Environments

Keywords

grid computing, intelligent dispatching, nested excepgio

1. INTRODUCTION

Grid computing aims to integrate collections of heterogeise
resources across administrative boundaries into a simgelsys-
tem (a grid). In this paper, we identify and solve three peois
that interfere with the widespread adoption of grid tecbgglfor
production use today.

First, a large number of wildly varying grid middleware sysis
is currently being developed. The standardization larusdas
not settled yet, and grid technology and application pnwgning

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SCO07November 10-16, 2007, Reno, Nevada, USA

Copyright 2007 ACM 978-1-59593-764-3/07/0011 ...$5.00.

interfaces (API's) are still a topic of research. As of todgsid
middleware and API'shange frequentland are ofterunstableor
incomplete[18]. Furthermore, different middlewares often offer
different functionality

Second, as grid computing still is a research area with mpag o
questions, middleware implementations tend to focus amieal
issues, and providmw-level programming interfaceas a result.
For instance, the Globus toolkit [15], a widely used middiesv
platform, significantly changed its APl over the last threayor
versions. However, all versions expose the underlyingrnelcgy
(respectively proprietary protocols, web-services amd\ileb Ser-
vices Resource Framework (WSRF)). Itis clear that thisterest-
ing and necessary research, but for today’s gsersthese techni-
cal details are irrelevant and exposing them is counterymtic.
Much like home appliance users are not interested in thélslefa
electrical power generation, grid application progranmsyaee typi-
cally not interested in the technical issues behind the grid want
to use the grid for production systems today, using a higbtia-
terface.

Third, heterogeneityin processors, the operating system, con-
stantly changing and evolving middleware, and the fact thfat
ferent grid sites use different grid middleware make it extely
difficult to develop and deploportablegrid applications.

This paper deals with the Java Grid Application Toolkit @av
GAT), which solves the three aforementioned problems. ohe |
level problem is addressed by implementing the GAT [10] spec
fication, which is ahigh-level API that aims to facilitate develop-
ment of complex grid applications. The GAT specificationais-|
guage independent, and implementations for C, C++, Pythdn a
Java exist. The GAT API is object oriented and offers higrele
primitives for access to the gridhdependent of the grid middle-
ware that implements this functionality. The JavaGAT is the Java
reference implementation of the GAT API. The problem of hete
geneous processors and operating systems is solved begause
virtualization techniques. In this case, we exploit the fhat Java
uses a virtual machine based approach.

The solutions for the imperfect and evolving middleware ford
the heterogeneity problems are discussed below. JavaGAT in
grates multiple grid middleware systems with different amabm-
plete functionality into a single, consistent system, gsintech-
nique calledintelligent dispatching This technique dynamically
forwards (dispatches) application calls on the JavaGAT taRine
or more grid middlewares that implement the requested imct
ality. The selection process is done at runtime, and usesigm|
and heuristics to automatically select the best availahidie+
ware, enhancing portability. If a grid operation fails, theslligent
dispatching feature will automatically select and dispate API
call to an alternative grid middleware. This process cammuntil

a grid middleware successfully performs the requestedatiper,
achieving transparent fault tolerance. The JavaGAT defipes
cial nested exceptionthat contain the reason for failure for each
individual middleware. When no grid middleware can perfdha
requested operation, the JavaGAT throws the nested esoefati
facilitate reasoning about errors and debugging, impgpappli-
cation reliability. Equally important, JavaGAT defines arfre-
work for developing grid middleware bindings. The framekvor
contains a large collection of generic code, significanithypsify-
ing this process.

Itis important to recognize that the middleware developeesas
important as the end users: without robust bindings to reiddie,
a grid APl is useless. Because of the sheer number of differen
middleware systems and their constantly changing APIs ameat
provide access to all middleware systems ourselves. Fumtire,
because writing middleware bindings for JavaGAT is strdagh
ward, middleware developers achieve the freedom to expatim
with different architectural designs and new techniquelsis Tan
now be done without interfering with the application pragraers,
as the top-level API (the JavaGAT API) remains fixed.

The contributions of this paper are as follows:

e We introduce a novel technique calledelligent dispatch-
ing that allows to integrate the heterogeneous and incom-
plete functionality offered by current grid middlewaresoin
a simple and consistent API. Intelligent dispatching selve
portability problems, both of the underlying computingtpla
form (OS, library versions, architecture) and the différen
grid middleware systems and versions. Intelligent didpatc
ing can even provide transparent fault tolerance if openati
are not present in a middleware system, or if they fail.

e We define speciailested exceptiongvhich can contain mul-
tiple inner exceptions describing the reason why grid oper-
ations failed. Nested exceptions allow applications td dea
with and reason about errors, even when intelligent dispatc
ing tries multiple grid middlewares subsequently.

e We define a powerful interface and framework that can be
used by grid middleware developers to quickly and efficient!
implement GAT bindings to their middleware system, with-
out unnecessary duplication of code.

e By offering solutions for the heterogeneity problems, whil
providing high-level programming interfaces, we achiawsct
tionality that grid users urgently need today, despite filae/é
of) evolving middleware, bringing production use of thedgri
a step closer.

The remainder of this paper is structured as follows. In the-S
tion 2, we describe the API and global structure of the JavaGA

High-level API
Grid
1/0 |

Information
system

Resource

GAT Object
Brokering

Factory

Monitoringl

Steering | |

JavaGAT Engine
Capability Provider Interface (CPI)

Grid Resource
1/0 Brokering

JavaGAT Adaptors

Information

Monitoring ¢
system

Steering | |

Figure 1: The structure of the JavaGAT implementation.

base of JavaGAT is still increasing, and we actively corgthde-
veloping JavaGAT in the context of the Ibis project [5], ahe t
Virtual Labs for E-Science (VI-e) [9] project, and will cintie to
do so in the years to come. Both projects involve grid applica
tion programmers who need to deploy and use their applicatio
on the grid today. It is important to note that grid applioatpro-
grammers usually areot computer scientists. Our users include
physicists, chemists, astrophysicists, bioinformatiogdical re-
searchers, etc. They are typically not interested in the igid-
dleware and the technology that is used underneath (weizesy
WSRF, etc). Furthermore, users generally have the regaineto
use several different externally-managed compute ckisterulta-
neously for production work (e.g., since they have bougletesy
there). These clusters have different architectures aadifferent
grid middleware systems.

Since the initial JavaGAT implementation we have taken adva
tage of the user feedback, and identified and resolved mangss
that were present in the original GAT specification. As a lteghe
JavaGAT implementation drifted away from the specificatigve
found that users deem integration with existing Java paekagd
tools extremely important. Sometimes this required APInges
that deviate from the specification. For instance, the renfite
access interface of the JavaGAT differs from the GAT spegific
tion [10], and is compatible to Java’s standard file API, bisegthat
is what programmers are familiar with. In other areas, wereed
JavaGAT beyond the scope of the GAT specification. For exam-
ple, the GAT specification only specifies access to files, atd n
to directories. In JavaGAT, users can use directories iplaties
where they can use files (e.g., to stage in a directory witlitsall
subdirectories before a job is started). JavaGAT also addppli-
cation steering API, while the original specification ongeatk with

We use examples to demonstrate the GAT API and to explain why monitoring.

intelligent dispatching is useful. Section 3 describestbsted ex-
ceptions. The intelligent dispatching technique is désctiin de-
tail in Section 4. Section 5 describes the adaptor writingiework
that facilitates the implementation of new middleware bigd. We

evaluate our approach and show some experimental resi8ecin
tion 6. Finally, we discuss related work in Section 7, andobaahe

in Section 8.

2. THE JAVAGAT

The JavaGAT currently is the most advanced implementation o
the GAT API [10], which was defined in the EU-funded GridLab
project [4]. Even though GridLab was finished in 2005, theruse

2.1 The Global Structure of the JavaGAT

The global structure of the JavaGAT is shown in Figure 1. The
system consists of four layers. The top layer is the higkileser
API. The second layer is the JavaGAT engine, wich is respnsi
for delegating the API calls to the correct middleware. Bsea
JavaGAT has to support multiple grid middlewares, we uséuay®
in” architecture. The third layer of the JavaGAT is the ifaee
that is used by these plug-ins. We call this the Capabilityiler
Interface (CPI). The bottom layer consists of the plug-taled
adaptorsin this context. The adaptors contain code that binds to a
specific middleware platform.

The GAT APl is object oriented: the grid functionality is @ged
through GAT objects, such & | e, Job andResour ceBr oker .
Grid applications can create GAT objects with the GAT Obfact
tory (the leftmost box in the API layer of Figure 1). The APkka
ages provide support for monitoring (both for the grid itseld for
applications), steering of applications, grid I/0 (e.gmote file ac-
cess), resource brokering and job submission, and an iatgym
system to store application-specific data. Each GAT API ase
set of Java interfaces to define its functionality. The onlgep- 10
tion is the GAT /O API, which does contain a set of interfadeg 12
also provides an additional set of classes that extend #dsses in 2
the standargava.io package. This way, users of the JavaGAT caﬁp
use remote files with the same classes they are familiar with J;
local files. Our users indicate that this is a tremendousradge; 16
it makes it trivial to grid-enable the 1/0O part of an existidgva 17
application. 18

One of the central objects in the JavaGAT API is the GATCon-
text. It contains handles to security information. The user spec-
ify security information (credentials, passwords, etclusing Se-
curityContexts, which are in turn stored in the GATContefin
application can use more than one GATContext, and can aestri
access that adaptors have to security information. As weewl
plain in more detail in Section 4.2, the GATContext also fiots
as a container for engine and adaptor state.

Another central idea in GAT is the conceptmeferences The
Preferences class contains key-value pairs (both Strihgs)ex-
press information that is passed on to the adaptors. Forpmram
the preference'(ft p. connecti on. passi ve", "true")in-
structs the FTP adaptor to use passive connections. Preésrare
typically opaque to the engine, they are just forwarded ¢cetthap-
tors. There is, however, a small set of preferences thatagireted
by the engine itself. An example of this is a preference t@eef
the use of a particular adaptor for a GAT object. Preferecaes
be global, or local for a specific GAT Object. In the lattereabe
application provides the preferences when the object &ede

Throughout the JavaGAT, Uniform Resource Identifiers (JRIs
are widely used, especially for file access. URIs are a sapefs
URLs. The engine has some built-in knowledge of URIs, and can
use them to select adaptors. The engine knows that a URI with a
"ssh" scheme can only be used by adaptors that support the SS
protocol, for instance, and will thus not instantiate othdaptors.
An important special scheme that GAT defines is the "any"mehe
which means that the engine is allowed to select any adaptor.

a file, for instance, this means that it can be transfered aiith
transfer protocol that works. As we will explain later, teydGAT
tries to use an intelligent mechanism to select the besttadap
these cases. The “any” scheme is the most widely used URireche
in applications.

The capability provider interface (the third layer in Figut)
contains a set of abstract Java classes that implement theAGA
interfaces. The CPI classes thus can contain generic cadlésth
shared between the adaptors. JavaGAT makes extensive s of
feature, to facilitate the adaptor writing process. Beealas/aGAT
is human-oriented, we consider the adaptor interface asriumt
as the API that is exported to the application. Because gitd m
dleware functionality and APIs change frequently, it is artant
that it is as easy as possible to develop GAT adaptors for nielw m
dleware, or to modify the adaptor if the middleware chandase
to the great number of middleware platforms, and their feeqy
of changing, we cannot write and maintain all adaptors dvese
JavaGAT thus exports the GAT API to higher layers (typically
grid application), and provides a plug-in interface (the)ae the
lower layers (i.e., the adaptors). The engine is respaméilrout-

1
2
3
4
5
6
7
8
S

import
import

org.gridlab.gatx;
org.gridlab.gat.io. File;

public class Copy {
public static void main(String[] args)
throws Exception {
GATContext context =new GATContext();
URI source =new URI(args[0]);
URI dest =new URI(args[1]);

/I Create a GAT File object

File file = GAT.createFile(context, source);

file .copy(dest); // The actual file copy.

GAT.end (); // Shutdown the JavaGAT.

Figure 2: Actual code to copy (remote) files and directories vth
the JavaGAT.

direct copy

. not possible
Globus Toolkit

JavaGAT

Figure 3: A third party copy using different middlewares.

ing calls between the layers.

2.2 An Example: Copying Files

We illustrate the concepts explained above with a JavaGAT pr

ppram that can copy files and directories. The code shown in Fig

ure 2 isnot pseudo code, but actual code that implements this func-
tionality. The example copies a file (or directory) that isged as

the first command-line argument to the destination thatesstt-

ond argument. The examples below run this program on a user's
workstation (runGATApp is a small wrapper script that sgighe
Java environment).

e Alocal copy:
runGATApp Copy /bin/echo foo

e A remote to local copy with SSH:
runGATApp Copy ssh:// machine. a//bin/echo foo

e A remote to local copy with GridFTP:
runGATApp Copy gsi ftp://machine. a//bin/echo foo

e A remote to local copy, letting JavaGAT choose the “best”
protocol, because the URI scheme is “any”:
runGATApp Copy any://machi ne. a//bin/echo foo

e A third party copy: from a remote location to another remote
location, while letting JavaGAT choose the best transfer pr
tocol:

runGATApp Copy any:// machi ne. a// bi n/ echo
any:// machi ne. b/ f oo

The example shows the flexibility and expressiveness of e G
API. It also illustrates what we mean with the human-oridrap-
proach: an application programmer wants to think in termilef
objects, not in terms of (web) services, WSRF, etc. Althodgh
sirable as a flexible technical infrastructure for middlesyasuch
models are not suitable as an application programmer aderf
JavaGAT provides a high-level API, and can even hide the grid
middleware and transfer protocols altogether, as is showthé
use of the "any" scheme. In this case, the engine will autemat
cally select the “best” transfer mechanism, and will everyreith
other protocols if the best mechanism fails, until one iswfibthat
works. What we mean with the “best mechanism”, and how the
engine selects it will be described in Section 4. The JavaG#T
automatically perform copies between two remote sitesusatif-
ferent grid middlewares, even if a direct copy is not possit#n
example of this is shown in Figure 3.

2.3 Designing for Portability, Fault-Tolerance,
and Middleware Evolution

The examples above demonstrate that it is important to digal w
portability, changing and incomplete middleware and faolér-
ance when designing a high-level grid API. We discuss each of
these areas in turn below.

Portability

An important feature to obtain a better user experience iapib-
ity. There are two aspects to portability. The first aspethas it
is important that development and deployment of the apiidicas
as easy as possible. With traditional languages, appitatiave
to be recompiled for each platform. Different operatingteys
and different (versions of) libraries make this extremetpeprone
and time consuming. We solve this problem by using a Javaebas
approach. Java has several properties making it attrafctiverid
computing, notably its "write-once, run anywhere" poripiJava
code can run without recompilation on any Grid site that hisva
virtual machine (JVM) installed.

The second portability aspect is that of heterogeneity efid
middleware. If the sites where a grid application is deptbyse
different (versions of) middleware, a user-friendly griéPlPauto-
matically selects a working middleware (e.g., see Figurd3pe-
cial mechanism is needed that forwards API calls to a spenifie
dleware at run time, as the correct middleware used is nowvkno
at compile time. The forwarding of methods is generally ezll
dispatching[14].

We call the approach we take with the JavaGAtelligent dis-
patchingfor two reasons. First, the JavaGAT uses several tech-
nigues to automatically select the “best” middleware atime
(See Section 4). Second, the actual middleware that haseto ex
cute a specific operation is selected only whenever an operat
is invoked, and not when the corresponding API object isterka
Thus, JavaGAT uses function-level binding instead of ddel
binding. A single API object can thus use multiple middleggar
Intelligent dispatching is more robust and flexible, andstmore
user-friendly than static dispatching. For example, if a i to
be copied from a workstation to machine A and to machine B, the
transfer from the workstation to site A can use a differeansfer
mechanism than the transfer from the workstation to sited®. F

NestedException

InvalidUserOrPassword
Exception

NotAppIic.abIe CredentialExpired
Exception Exception

Figure 4: A NestedException.

of the underlying middleware is effectively impossiblechase the
application has to explicitly specify the adaptors thatenawy be
used. With the techniques introduced in this paper, usersea
oblivious to these technical details. The intelligent dighing fea-
ture seperates the JavaGAT from other similar projects. tNero
framework can do this, including GAT implementations foneat
languages. We will discuss intelligent dispatching in naetail in
Section 4.

Fault Tolerance

Grid APIs should also deal with faults. We demonstrate theeli
designed dispatching mechanism can provide this by subségu
executing operations with different grid middlewares,iluhe op-
erations succeeds (see Section 4). Obviously, this carvaoly if
multiple middlewares are applicable and implement the estpd
operation. If no middleware can successfully perform tlygiested
operation, failure has to be reported to the grid applicatio

In Section 3 we show that this can be done in the context of inte
ligent dispatching by using special nested exceptionsll Hail-
able middlewares failed, the JavaGAT throws a nested excgpt
containing a list of middlewares that were tried, and thasoegor
each failure. The application can use the nested excetiones-
tigate and deal with the error.

The JavaGAT can tolerate both theavailability and thefail-
ure of an implementation. However, it cannot deal with transien
failures (failures that are not detected by the middlewtself) and
operations that do not terminate.

Dealing with Changing and Incomplete Middleware

Intelligent dispatching significantly simplifies adaptoritmg. For
example, a file adaptor might only support a highly optimizad
plementation ofile.copy but nofile.deleteoperation. In that case,
the JavaGAT engine will automatically fall back to anothdap:
tor that does implement the delete operation (if such antad&p
available). This feature is of key importance, because nugity
services do not provide theompletefunctionality that the GAT
API offers. The JavaGAT exploits intelligent dispatchimgatuto-
matically use multiple services to implement the functidpaf a
single GAT object.

3. NESTED EXCEPTIONS

Discussions with our users led to the insight that relialvid g
applications need to reason about errors. For instancdiables
system may retry certain operations if a remote servicevsdmr

example, the first transfer may use SSH, while the second usesunreachable, as it may be restarted, or the cause could le-a te

GridFTP. When static dispatching is used, the programmedse
to know this fact in advance.

With static dispatching, an application has to craaie different
source file objects, one explicitly with the SSH protocold ame
explicitly with the GridFTP protocol. As a result, hidingetlletails

porary network failure. However, if the problem is causedaby
invalid user credential, retrying is useless as this sibnawill not
rectify itself. Instead, the user must be informed. Thawfan ap-
plication must be able to differentiate between differenies, and
well-defined exception types are important.

Nested exceptions are thrown by the JavaGAT engine valien
adaptors failed. Standard Java exceptions can contaihemex-
ception that caused it. JavaGAT generalizes this idea: edEst
ceptions can have more than one cause. In this case, theme is o
cause for each adaptor that failed. NestedExceptions als@ia
the name of the adaptor that threw each inner exceptionhé&urt
NestedExceptions have methods to iterate over the innexpexc
tions, methods to print meaningful strack traces, etc. AamgXe
of a NestedException is shown in Figure 4. The nested exaepti
and the adaptors work together to produce user-inteltgéstor
messages. If a nested exception is printed, it producesioee |
per adaptor that failed. The adaptors are responsible fatuor
ing meaningful error messages. The nested exception imé-igu
would produce the following output:

- START OF NESTED EXCEPTION - --
Local Fi | eAdaptor failed: Cannot copy to renpte destination
SshFi | eAdaptor failed: Invalid user nane or password
G i dFTPFi | eAdaptor failed: Credential expired

- END OF NESTED EXCEPTION ---

A stack trace of a nested exception is handled similarly:staek
traces of all adaptors are subsequently printed on therscree

r 1
sFile Interface}

GAT Dynamically
File Generated
Object Proxy Class
Y
Adaptor
Invocation

—

File Interface!

Handler class

File Interface:

iFile Interface!

File CPI class

File CPI class

File CPI class

Local File SSH File GridFTP File
Adaptor Adaptor Adaptor
Class Class Class

The original GAT specification does not define any exceptions
let alone nested exceptions, as the specification is lamgnagtral,

and some languages do not have exceptions. However, we found

that this feature makes it substantially easier for appboapro-
grammers to debug their applications.

A key observation concerning intelligent dispatching isttthe
JavaGAT engine always catchal exceptions and errors when it
invokes methods on adaptors. The rationale behind thisi$oth
lowing. JavaGAT is a complex piece of software, but it alsesus
and depends on many external libraries which are equally- com
plex themselves. Especially the adaptors which bind to igniid-
dleware usually have many dependencies. All complex softwa
contains errors, and we assume that the libraries do as well.
practice, we found that this is a realistic assumption, ifi@aar
for rapidly changing and evolving grid middleware. We reglyl
experience errors and crashes in grid middleware libragsge-
cially in corner cases that are not frequently tested. Fanmmple,
we found that a certain library crashes when we requestiadist
a directory that contains more that a certain number of filesa-
GAT works around the instability problems by assuming thitgs
can and will go wrongn complex distributed systems, and that li-
braries contain bugs. Typical examples of errors that camroc
are null-pointer dereferences and arrays that are indeneside
their bounds. As long as a library does not hang indefinitidya-
GAT’s intelligent dispatching mechanism will effectivefyovide
fault tolerance, and will select another adaptor in caserafre
This process continues until an adaptor successfully pagdhe
requested operation, or until all adaptors have failed. Yéeime
that adaptors do not fail silently without throwing an exte.

4. INTELLIGENT DISPATCHING

In this section we will explain intelligent dispatching irtdil.
The mechanism consists of two steps. First, when a GAT olgect
created, an initial filtering is done, and the adaptors thatimple-
ment the object are instantiated. Second, when a methodbisad
on the object created in the previous step, the method mudisbe
patched to one or more adaptors.

When the JavaGAT engine is initialized, it must load the satap
that implement the actual grid functionality. To locate &uaptors,
JavaGAT uses an approach that is similar to Java’s classpeth-
anism, because it is easy to use and familiar to Java progeasnm

Figure 5: The implementation of a GAT object.

JavaGAT adaptors are distributed in Jgam files, which contain
compiled Java code. The manifest in each jar file describéshwh
classes implement which JavaGAT API. Jar files can be sigritbd w
a digital signature, and signed jar files could have moreilpges
than normal jar files. During startup, the engine dynamydaihds
the code in the jar file into the running application.

4.1 GAT Object Creation and Adaptor
Instantiation

When an application creates a GAT object using the GAT object
factory, the engine must determine which of the availablepad
tors are applicable for the requested object, and it hasstaritiate
them. In most cases, multiple adaptors will apply. Therfdava-
GAT creates a proxy class that implements the interfaceefédh
quested object, but forwards the application’s calls to @nmore
adaptors. We describe the initial adaptor selection psoaasd the
creation of the GAT object in this section. The next sectixui@ns
how the proxy class dynamically dispatches the invocat@mthe
GAT object to the adaptors. Figure 5 shows the internal sirac
of a GAT object, in this case Bile. Although trivial for the user,
internally GAT object creation is a complex process thasisis of
several separate steps, which are described below, ugoge as
a reference.

1. Before creating any adaptors, the JavaGAT engine craates
new nested exception (See section 3). If an adaptor is not
selected for some reason, an exception describing therreaso
is added to the nested exception. The nested exception can
in turn be investigated by the application for reliabili§yge
Section 3), testing and debugging purposes.

2. When a GAT object is created, the application can specify
additional local preferences. These are merged into aesingl
set with the global preferences that are attached to the GAT-
Context (typically, applications use only one GATContext)
Local preferences override global preferences. The iagult

set is matched against the preferences that are specified in
the manifest of the adaptor jar file. The merged list of ap-
plication preferences must contain all preferences requir
by the adaptor. If not all required preferences are matched,
the engine will not select the adaptors in the jar file for the
requested GAT object. In this case, the engine will create
a specialAdaptorNotSelectedExceptionhich is defined in

the JavaGAT API, so the application can determine this fact.
Currently, most adaptors have an empty list of required-pref
erences, so they can always be selected.

The JavaGAT engine also defines special preferences that al-
low an application to enforce the use of a specific adaptor.
Such a preference could for instance be "File.adaptor.yame
with the value set to "ssh". Effectively, specifying prefer
ences like this disable JavaGAT’s intelligent dispatcHieay

ture: only one adaptor is allowed as an implementation of a
certain object. This mechanism can be useful for testing and
debugging of applications and adaptors alike.

. Instantiate all remaining adaptors that were not filtevetd

in the previous step. The JavaGAT engine uses Java's reflec-
tion mechanism to lookup and invoke the constructor for the
adaptors that remain after the filtering process.

. Filter out adaptors where the constructor threw an eiaept
and add this exception to the nested exception. There can be
many reasons for an adaptor to throw an exception, and the
JavaGAT API defines several exception types for some com-
mon reasons. A frequently occurring case, for instance, is
that the adaptor is not applicable. An example of this is when
the user creates a file with a URI that contains a hostname,
which refers to a remote machine. The local file adaptor is
obviously not applicable in this case, as it can only access
files on the local disk. Another example is the creation of a
file object where the URI contains a specific scheme compo-
nent, like “sftp”. Only adaptors that understand this scekem
are applicable. For the others, JavaGAT throws Aldap-
torNotApplicableExceptigrwhich is defined in the JavaGAT
API. There can be multiple adaptors that understand a partic
ular scheme. For instance, the default JavaGAT distrihutio
currently contains three different SFTP adaptors that ifse d
ferent libraries.

Another common reason why an adaptor cannot be initial-
ized is that the required middleware is not installed, ot tha
required service is not running. Finally, there can be aprob
lem with the security context that is provided, a user name
or password can be invalid, or a credential could be expired.
JavaGAT also defines exception types for these cases.

. If no adaptors remain after the previous steps, there is no
adaptor that can implement the requested object. In thes cas

the JavaGAT engine throws the nested exception that con-
tains the reason for the adaptors to fail. The application or

6. When, after the selection process, multiple applicabbpa
tors remain, JavaGAT will sort them. This is mostly done
for performance reasons. For instance, file transfers are ty
ically faster with GridFTP than with SSH, as GridFTP can
use parallel data streams. Another reason for a partictdar o
der could be security: the most secure transfer protocdticou
be tried first (much like SSH does). To specify the order in
which adaptors are tried, the JavaGAT user or application
can specify aradaptor ordering policy The JavaGAT API
defines the AdaptorOrderingPolicy class, and an easy way of
creating user-defined policies. Finally, JavaGAT provides
default policy that aims to use a reasonable ordering of all
adaptors that are distributed with the standard JavaGAT dis
tribution. Which policy should be used can be specified by
the application code, and can be overridden by the user (by
using a command-line option that sets a Java system prop-
erty). The idea of adaptor ordering policies and the mecha-
nism that JavaGAT uses to implement them are not specified
in the GAT specification, but is a novel feature in the Java-
GAT. We found that it is a useful feature for advanced users.
Typically, the default policy supplied by the JavaGAT is-suf
ficient, so less advanced users are not bothered with thes. Th
instantiated adaptors are shown at the bottom of Figure 5.

7. Create a proxy that will forward calls to the adaptors. Be-
cause the application’s method invocation on a GAT object
must be forwarded to one or more adaptors, the engine has to
create an object that implements the API of the requested ob-
ject, and that intercepts and forwards the calls to the adspt
We use the standajdva.lang.reflect.Proxynechanism to do
this. This mechanism dynamically generates a proxy class
that implements a set of requested interfaces at runtime. In
our case, the interface that must be implemented is the Java-
GAT interface for the requested GAT object. The generated
proxy class implements the requested interface, and it la
be returned to the application as the GAT object. The proxy
object is the top-level object in Figure 5. The proxy will
forward the application’s invocations on it’s interfaceao
invocation hander

The engine creates an invocation handler object, caltigp-
torlnvocationHandlerthat has a reference to the ordered list
of selected adaptors. When an application invokes a method
on a GAT object, the method is actually invoked on the gen-
erated proxy. The name of the method and the parameters
of the invocation are provided to the invocation handler as
parameters. The invocation handler can now use Java’s re-
flection mechanism to invoke the requested method on the
adaptors. We will explain this process in more detail in the
next section. In Figure 5, the invocation handler is repre-
sented by the box in the center.

user can now investigate the reasons for failure, and take The mechanism described above is a novel feature of the Java-
appropriate action. We found that, in practice, the cause is GAT. All other GAT implementations and other high-level dyri
often a misconfiguration or a middleware failure. For in- middlewares use static dispatching instead of intelligkspatch-
stance, in some cases the user specifies a certain scheme in ang. With static dispatching, only one user-specified aolaistin-
URI (SSH, FTP) or selects a particular adaptor, as he knows stantiated when a grid API object is created. JavaGAT, irtrest
which middleware is installed on a particular resource.sThi selects adaptors dynamically, and new adaptors that wesa/aib-
effectively disables JavaGAT's intelligent dispatchirepf able at the time the application was developed are a parti®f th
ture. If the selected adaptor is not applicable because the process. Although the adaptor selection process is quitelax,
service is down or the user credential is not initialized»er e itis transparent for the application. Nevertheless, adedmusers or
pired (the most common error), JavaGAT will notify the user applications can still influence the process using ordepwiiies,

of this fact by throwing the nested exception. preferences, and URI schemes.

iFile Interface}

GAT Dynamically
File Generated
Object Proxy Class

Invocation
Handler class

iFiIe Interfacei iFiIe Interfacei iFile Interface!
File CPI class File CPI class File CPI class
Local File SSH File GridFTP File
Adaptor Adaptor Adaptor
Class Class Class

Figure 6: Invoking a method on a GAT object.

4.2 Intelligent Dispatching of GAT Object
Methods

We will explain the inner workings of the GAT engine when a
method is invoked on a GAT object by using an example. Figure 6
shows the same GAT File object we used in the previous section

but now annotated with the steps that are taken when an applic

invokes a method on the object. We will now describe eachef th

steps in more detail. The numbers inside the circles in Eigur
correspond with the steps below.

throw a NotimplementedExceptionThe file adaptors will
override some, but not necessarily all methods with their
own versions containing an actual implementation. Never-
theless, the adaptor invocation handler can always invuoke t
requested method, as it is always implemented, either in the
CPI class or in the adaptor itself. The CPI is described in
more detail in Section 5.

5. The local adaptor throws afdaptorNotApplicableExcep-
tion, as it determines that the destination URI contains a re-
mote hostname. The local adaptor cannot copy files to re-
mote hosts, and is therefore not applicable.

6. The adaptorinvocationHandler catches the exceptiahadds
it to the nested exception it created earlier, in step 3. As ex
plained in Section 3, the adaptor invocation handler always
catchesall exceptions and errors. Because the first adaptor
failed, the handler will now invoke the method on the second
adaptor (i.e., the SSH adaptor).

7. The SSH adaptor throws an exception, because the SSH dae-
mon on the remote site is not running.

8. This exception is caught by the invocation handler, amdd
to the nested exception. Next, tbepymethod of the third
adaptor is invoked.

9. The GridFTP adaptor copies the file and returns normally.

10. The adaptor invocation handler returns the result véfue
any) to the Proxy class.

11. The Proxy class forwards the result to the application.

The adaptor invocation handler invokes the adaptors in the o
der that is specified in the adaptor ordering policy, as desdrin
the previous section. However, for performance reasonsjymwe
plemented an additional optimization. If an adaptor susfcdly
implemented an operation, the adaptor is moved to the frioifieo
ordered adaptor list. This is done during step 10 in the elamp

1. The application invokes a method on the GAT object. For above. If the applications performs subsequent invocatamthe
sake of the example, let us assume that the method invoked same object, the adaptor that succeeded last time will & firist.

is copy, with the destination parameter
any:// machi neA domai n. conftestFile.

2. The dynamically generated Proxy class (see step 7 in Sec-
tion 4.1) is the actual Java object that implements the GAT
object API, in this case the File interface. The Proxy for-
wards a description of the invocation to the Adaptorinvoca-

tionHandler class.

This optimization is effective when adaptors fail afterfpeming
expensive operations, such as web service invocationsorhe s
cases, adaptors fail after a timeout. Using this optimizatthis
overhead only occurs once, during the first invocation on & GA
object.

5. THE ADAPTOR WRITING
FRAMEWORK

. The adaptor invocation handler first creates a NestegExce
tion object, which acts as a container for possible excaptio
the adaptors might throw. Next, the handler employs Java’s
reflection mechanism, and uses the description of the method
invocation that is provided by the proxy to forward the call t
the adaptors, until one succeeds (i.e., does not throw an ex-

In this section, we describe the framework that the JavaGAT p
vides to facilitate adaptor writing. The framework consisf two
parts. The first part is the abstract Capability Providetsrface
(CPI), which is the interface used by the adaptors. The skpart
is a set of generic high-level adaptors that provide aduttidunc-
ception). In the example in Figure 6, there are three adaptor tionality on top of the real adaptors that bind to the grid dhésvare.

available: a local file adaptor, an adaptor for SSH, and one | n€ adaptors are an important part of the JavaGAT systemy The
for GridETP. implement the actual functionality that is defined by thea@&T

API. Adaptors typically consist of “glue code” that trarsis GAT
. The invocation handler invokes the requested metbopy API requests into one or more grid middleware operations.
in our case, on the first adaptor. The handler can invoke the Because we consider JavaGAT adaptor writers equally irapbrt
copy method, because the adaptor extends the FileCPI classas the grid application programmers, it is imperative tittpdor
which in turn implements the File API. The FileCPI class writing is as easy as possible. Many different middlewasteays
contains implementationfr all methodsin the File inter- exist, and JavaGAT has to support different versions ofalsys-
face, although most are “dummy” implementations that just temssimultaneously This becomes even more important because

the grid middleware changes so frequently. Adaptors tbegeflso
have to be modified frequently, and new adaptors have to ke wri
ten for new middleware. To facilitate the adaptor impleraéinn,

JavaGAT provides as as much generic code in the CPI classes as

possible.

The CPI classes implement the interfaces specified in the Jav
GAT API, and provide code faall methodsthat are defined in the
API. Some methods contain code that actually implementsethe
quired functionality. For instance, simple getter andesatiethods
are typically implemented at the CPI level. All other method
plementations just trolotimplementedExceptiondethods can
be overridden by the adaptors that extend the CPI classes-as r
quired. If methods that do not contain an actual implemémat
are not overridden, JavaGAT's intelligent dispatching hagism
will catch theNotimplementedExceptignand will automatically
select another adaptor.

JavaGAT Adaptors have to extend the CPI classes. Since the CP
classes implement the corresponding JavaGAT API intesfabe
adaptors automatically inherit this, and thus implemeet GAT
API. All methods are already implemented in the CPI classes,
adaptors do not have to implement the complete API. In faostm
adaptors only implement a small fraction of the full API. dav
GAT'’s generic code in the CPI classes adds additional fanati
ity, and the intelligent dispatching mechanism fills in teenaining
blanks, by using other adaptors to implement the missingtfom-
ality.

Adaptors can have internal state, which can be saved between

invocations. The GridFTP adaptor, for instance, cacheseon
tions to the GridFTP servers between file operations. In stases,
adaptors can return adaptor-specific handles (e.g., a Refno-
ker can return a Job handle). In such cases, adaptors acasiisp
for recognizing the handles that they returned, becausatéii-
gent dispatching mechanism could try different adaptoth wie
handle. If an adaptor is called with an adaptor-specific leaticht
does not belong to it, an error is thrown, allowing the ingelht
dispatching mechanism to select another adaptor. Evéyttizé
correct adaptor will be executed.

The JavaGAT implementation comes with a full set of locajada
tors that implement the complete API on a local system. This i
useful as an example for adaptor writers. Furthermoreyésyap-
plication developers the possibility to test their appima on their
local workstation or laptop, before it is deployed on the&lgBince
the debugging of distributed applications is notoriousiffialilt,
this is an important feature. Thanks to JavaGAT'’s inteHigeis-
patching feature and the fact that the engine dynamicadlgisdhe
adaptors into the running program, deployment on the gril-is
most trivial. No recompilation or reconfiguration is needed

5.1 Gridl/O

One of the most important and widely used APIs of the GAT is
the Grid I/O API. We currently have many adaptors that immgam
it. However, many middlewares only provide a subset of timefu
tionality that the JavaGAT API defines (e.g., many protodalsot
support third party copies, or copies of directories). Efiane, we
invested a lot of effort to provide us much functionality asgible
in a generic way at the CPI level. Below, we list some of thecfun
tionality the JavaGAT grid 1/O CPI implements. All genetiga
defined code can be overridden by an adaptor if a better or more
efficient implementation is available.

e All code that deals with the handling of URIs is generic, and
is implemented in the CPI.

e A file move operation can be implemented by a copy fol-

lowed by a delete of the original file.

e The file API provides several ways of listing files in a di-
rectory, calledist andlistFiles. The first returns an array of
Strings that contain the file names, while the latter retams
array ofFile objects. Theile CPI provides generic imple-
mentations of each of the two methods on top of the other
method. Therefore, an adaptor only has to implement either
list or listFiles, but not both. Most adaptors simply imple-

ment only thdist method.

e Java'sFile class, and the compatible JavaGRile provide
methods to filter directory listings, usigleFilters andFile-
NamegFilters The code to do the filtering is implemented in
theFile CPI class.

e Operations that deal with directories can be implemented in
a generic way. Theile CPI, for instance, provides a mecha-
nism to recursively delete a directory. JavaGAT implements
this by creating GATFile objects for each entry in a direc-
tory, using thdistFilesmethod described above. The created
File objects are normal GAT objects, and thus support intel-
ligent dispatching. The CPI can now simple invoke a normal
delete operation on each of the files. Any adaptor can be used
to perform the actual delete. Similarly, the JavaGAT CPI
provides implementations for copying and moving directo-
ries, and for thankdirsoperation that creates a sequence of
directories in one call.

5.2 Resource Management

With the resource management API, applications can, amhongs
others, submit jobs to the grid. Before the job is submiteedet
of input and application binary files can be pre-staged @ubpo
the site where the job will run), while afterwards the fileatthre
produced by the application run can be post-staged (copiekl to
the submission site). Many grid middlewares do provide filnig-
tionality in some way, but in many cases the support is not-flex
ble enough for our needs. Sometimes only files can be staged in
and not directories. In other cases, the middleware doesreate
a special sandbox directory, so when multiple jobs are stibdi
to the same machine, they may overwrite each others file, Als
many systems assume that the files to be staged in residesattthe
mission site, while this is not always the case. Finally,died/ares
almost always assume that the compute elements share ati#iesy
(e.g., using NFS) with a frontend system where the grid sdleed
is running, and staging files to a local disk of a compute etgéme
is not possible. Nevertheless, this can be imperative fodgmer-
formance. JavaGAT implements all aforementioned featires
generic way in the resource management CPI.

JavaGAT provides a mechanism that creates a sandbox onaremot
machines. All application input files and directories arpied to
the sandbox directory before the job is started. The copyaepe
tions are done using JavaGAT's file API, and thus automdyical
use intelligent dispatching, and will exploit the functadity of all
available file adaptors. Because third party copies arestgapby
the File API, source files can be located anywhere in the iy
could also be replicated. When the Job is finished, the ofilpat
are copied back using the same mechanism.

5.3 Security

The security CPI provides some generic functionality toheac
security information such as passwords and credentialsthéiu
more, it provides support to retrieve credentials from a kiyy
credential management service [6]. Finally, the JavaGATiSsy

CPI provides a mechanism to restrict the availability ofusieg in-
formation to certain adaptors or remote machines. Thisesulis
because some adaptors might not be trusted with certaimityecu
information. Likewise, passwords should be restricted setaof
trusted hosts in the grid. This mechanism is not presen& AT
specification. However, some of our users (e.g., those whab de
with medical data) require this feature.

5.4 Information Services

With the information service API, GAT objects can be persis-
tently stored. Objects that support persistency are foant files,
jobs and communication endpoints. To ensure that diffeGAT
implementations and different language bindings can usle eth-
ers serialized objects, Advertisable objects are mardhalXML.

Submission method time (seconds)

native globus-job-run 111
CoG kit 11.8
JavaGAT 12.6

Table 1: Submission time of a trivial job to a local cluster.

invoked, JavaGAT's intelligent dispatching mechanisml ailto-
matically select the Jsch-based SSH adaptor. In genemad) tids
mechanism, we can add specialized adaptors in that incpsase
formance in special cases, without breaking existing fonetity.

The JavaGAT engine and the CPI implement the marshaling in a 6. EVALUATION

generic way, using the Castor library [3]. For GAT objectatttio
not have adaptor-specific state, the engine implements ainghal-
ing in a manner that is completely transparently for the tatap
This is often the case for files, where the only state typjdalthe
URI that contains the file’s address. Adaptors are resptansib
marshaling their own internal state, if they have any. ThaG&AT
engine offers convenient hooks to implement this.

5.5 Filling in the Blanks

In this section we evaluate the overhead that is introduged-b
telligent dispatching and the other techniques describehis pa-
per. Furthermore, we discuss the successfulness of ouvagiprin
terms of application programmer and middleware develogepa
tion of the JavaGAT.

6.1 Performance Evaluation

We argue that the overhead introduced by the techniques we de
scribe here is insignificant, due to the typically high cosgod

We also provide some simple adaptors that add backup imple- operations. We now provide some experimental results that s

mentations for some functionality if no adaptor impleméntadap-
tors like this are typically added as the last entry in thepéateor-
dering policies, so they are only selected if all else fdtsr exam-
ple, we provide a File adaptor that only implements an inieffic
third-party copy, and nothing else. This adaptor uses GAS fil
(and thus benefits from the intelligent dispatching) to iempént
the copy. First, the file or directory is copied from the seunost
to the local host. Next, another copy operation copies fiuridcal
host to the destination machine in a second step. Althouighigh
not very efficient, we found that many JavaGAT users preféoa s
copy over no copy at all. This is especially true for batchsjand
production systems. A similar approach is taken for filestrs. If
no adaptor can do remote streaming, JavaGAT features atoadap
that copies a file to the local disk and streams it from thergis T
method of providing additional functionality using geredadap-
tors that in turn use other adaptors as building blocks isiptes
only because of the intelligent dispatching of grid openasi

5.6 Optimizing Special Cases

We can also exploit JavaGAT's intelligent dispatching fieas to
increase application performance in special cases. Thisedone
by writing a specialized adaptor that implements some diperan

port this claim. We ran our experiments on a dual-CPU / doaé-c
2.4 GHz AMD Opteron DP 280, with 8 GB of memory, and 10
Gigabit/s Ethernet.

First, we ran a simple job submission test, that submits xee e
cutable “/bin/hostname” to the local cluster, using thelfakotoolkit
3.2 pre web services, and using SUN Grid Engine (SGE) as the lo
cal cluster scheduler. The “hostname” command prints timeena
of the compute element and only takes 12 milliseconds. Ne file
are pre-staged or post-staged. This therefore is a triialgnd the
lower bound of job submission time. The measurements pregen
in Table 1 show that even the submission of a trivial job alyea
takes 11 seconds to a local machine. If the destination i®tesm
or if the newer Globus Toolkit version 4 that is based on WSRF i
used, the times become even higher (not shown). The ovedfead
the JavaGAT is only 800 milliseconds, and this includes ime t
for initializing the JVM, the JavaGAT engine, and loadings&&p-
tors. For realistic jobs, this overhead is insignificant.

We also performed micro benchmarks of the intelligent dispa
ing mechanism. Our test creates one million GAT File objeatsl
measures how long this takes on average. Nine File adap®rs a
installed, of which seven are actually applicable in thisecaWe
found that the creation of a new GAT object takes 1.3 millisec

a more efficient way. For example, we have an SSH File adaptor onds on average. This time includes the instantiation afrs&AT

for JavaGAT that uses the Jsch library [1]. However, we foilnad
the encryption of the channel is inefficient in this librafthough
this is not a problem for most file operations, for big file i
this results in a performance problem. Therefore, we wroterg
simple command-line SSH adaptor that can copy files if a eativ
command-line SSH client is installed. On most Unix systeis t
is the case, and native SSH clients are available for Windmsvs
well. Next, we can use the adaptor ordering policy mechanégm

adaptors, and checking the provided security informattwrefch
adaptor (e.g, checking for a valid Globus proxy).

Subsequent invocations on the created GAT File object uge Ja
GAT’s intelligent dispatching mechanism to forward thelsab
the adaptors. We measured that the invocation of an operatio
a GAT Object takes only 8 microseconds on our hardware. It is
clear that the overhead of intelligent dispatching, whiglini the
microsecond range is insignificant for grid operations,chtiypi-

make sure the JavaGAT engine tries the command-line SSH copycally are in the second range.

adaptorbeforethe Jsch-based SSH adaptor. If no SSH client is in-

stalled, the command-line adaptor will fail, and the copythod
of the Jscj-based SSH adaptor will be invoked. The commiuad-|
adaptor only overrides and implements the CPI's copy ojmrat
For all other file methods, the original CPl methods that iibth
NotimplementedExceptioase automatically inherited. If they are

6.2 Successfulness of our Approach

The successfulness of our approach is demonstrated byrtfee la
number of adaptors that was successfully implemented éoddla-
GAT. For instance, for file access, JavaGAT has adaptoroéa |
files, GridFTP, RFT, FTP, SSH, SFTP, HTTP, HTTPS and SMB/-

CIFS. For resource management, the JavaGAT supports tw&al f
ing, GRMS, Globus GRAM, SSH, prun, PBS, Sun Grid Engine
(SGE), ProActive, Integrade and Zorilla. Several of thedapa
tors were written by external groups, who confirm that theptata
writing framework that the JavaGAT provides is extremelgfus

ware independent, like the GAT. However, DRMAA only deals
with resource management, while the GAT also deals withrothe
important issues, such as grid I/0, monitoring and infoiameser-
vices. Finally, in contrast to JavaGAT, DRMAA uses statioding
to a particular middleware. Nevertheless, DRMAA providesa-

This is also shown by the size of the adaptors. The SGE adaptor ful and important abstraction, and JavaGAT has adaptotsuse

for instance contains only 422 lines of Java code (includiomn-
ments). The complete Globus GRAM adaptor needs only 1614
lines of code.

Furthermore, many applications were developed using thee Ja
GAT. For instance, medical people at the VUMC hospital in Ams
terdam were able to write applications that analyze Mag#isto
cephalography (MEG) scans on several different clustemailsi
taneously [13]. Physicists at the AMOLF institute are usihg
JavaGAT to perform parallel Fourier transforms on masstspec
etry data [22], transparently streaming files with diffénerotocols
such as SFTP, SSH and GridFTP. A computational chemistiypgro
has used the JavaGAT to implement file browsing and expetimen
data management on the grid. Computer scientists have beed t
JavaGAT as a back-end for work-flow submissions and pori&ls [
2], and linguists are using the JavaGAT to implement anglgéi
specialist texts [8].

7. RELATED WORK

The GAT [10] is a language independent object-orientedifipec
cation. This paper describes the Java reference impletientz
the GAT. However, other language bindings also exists, fagC,
C++ and Python. The most important difference between the-Ja
GAT and the other implementations of the specification is tihea
JavaGAT uses intelligent dispatching, while the other enmn-
tations use static dispatching. Furthermore, the JavaG¥sTam
additional steering interface, and an more user-friendlyaom-
patible file API.

The Java CoG Kit [11] uses an abstraction model to provide a
grid execution framework. The API provided by the CoG kityonl
supports remote file access and job submission. An intagefga-
ture of the CoG Kit is that it supports a form laite binding The
actual implementation of an API object is selected at ruretiamd
not at compile time. However, the application must exgliGgpec-
ify which middleware is used, whereas JavaGAT can do this se-
lection process automatically. Moreover, a single adafitalled
provider in the Java CoG) is selected foremtire object We have
shown that the JavaGAT approach of using intelligent didpag
is more flexible (see Section 4). Intelligent dispatching saveral
key advantages, such as the ability to use different midatiesvto
implement a single object, better portability, and the supfor
fault tolerance.

An interesting new development is the standardization ef th
Simple API for Grid Applications (SAGA) [16] by the Open Grid
Forum (OGF) [7]. Like GAT, SAGA is a high-level middleware-
independent API for grid applications. The API for SAGA iedely
based on the GAT and on the CoG kit abstraction model. A ref-
erence implementation for C++ already exists [17]. Java&AT
intelligent dispatching mechanism heavily influenced tlesign
and implementation of the C++ reference implementatiorickvh
currently already supports a simpler form of dynamic dishiag.
Moreover, our group has received funding to implement tha Ja
reference implementation for SAGA. We intend to reuse |payts
of the JavaGAT engine, including the intelligent dispatchfieature
described in this paper.

DRMAA [20] is an API specification for job submission and
control to distributed resource management systems, aj@elin
the context of OGF [7]. DRMAA is object-oriented and middle-

DRMAA to interface to cluster schedulers.

The GridRPC specification [19] defines a model and API for a
remote procedure call mechanism for grid environmentsdRE?IC
is specifically targeted for end-user applications, notdigdare.
Two reference implementations for GridRPC exist, Ninf-@][2
and NetSolve/GridSolve [23]. GridRPC uses static dispatch
when an object is bound to a server, all calls to that objedit wi
be performed at that particular server. We argue that igeait dis-
patching is more flexible. An interesting framework for iraplent-
ing dispatching mechanisms, called PolyD, is presentedd. [
JavaGAT uses a similar mechanism, but adds intelligende &t
ting the dispatching mechanismutomaticallyselect suitable adap-
tors.

8. CONCLUSIONS AND FUTURE WORK

We have introduced the JavaGAT: an environment providing an
object-oriented, high-level, and middleware-independd®i to the
grid. We have described a novel technique, caiigdlligent dis-
patching used by the JavaGAT to integrate the heterogeneous and
incomplete functionality offered by current grid middlewa into
a simple and consistent API. With intelligent dispatchiting, Java-
GAT can automatically select the best middleware for eadivid-
ual grid operation. When a particular middleware fails, Jaga-
GAT engine will automatically select alternative implertetions
of the requested operation until one succeeds, providamgspar-
ent fault tolerance, and solving heterogeneity problemsake all
available middleware implementations fail to provide auesied
operation, JavaGAT provides the application with a spenidted
exceptionenabling detailed error analysis when needed. The over-
head of using intelligent dispatching is insignificant cargd to
the cost of the grid operations.

We also have shown how JavaGAT provides a powerful frame-
work that allows grid middleware developers to quickly afit e
ciently implement GAT bindings to their middleware systawith-
out unnecessary duplication of code. This way, grid resessoccan
experiment with new middleware ideas without interferirighvthe
grid application programmers. The many middleware adapitat
have been provided by third-party developers indicate thieility
of our approach.

We have demonstrated that the JavaGAT implementation as a
whole achieves functionality that grid application pragraers re-
quire today. Several groups have implemented grid apmitsit
using the JavaGAT, using the grid for production systemspitie
existing shortcomings of the underlying middleware. Infiliere,
we will also apply intelligent dispatching, nested exceps, and
our adaptor development framework to the SAGA referencddmp
mentation for Java. As SAGA has been inspired by the GAT, It wi
combine JavaGAT's benefits described in this paper with ah AP
that will have been standardized within the Open Grid Forum.

9. ACKNOWLEDGMENTS

This work was carried out in the context of the Virtual Labora
tory for e-Science project (www.vl-e.nl). This project igpported
by a BSIK grant from the Dutch Ministry of Education, Cultumed
Science (OC&W) and is part of the ICT innovation program @f th
Ministry of Economic Affairs (EZ). This work has been supigar

by the Netherlands Organization for Scientific Research QYW
grant 612.060.214 (lbis: a Java-based grid programminganv

ment). We kindly thank Niels Drost, Jason Maassen and Frank [18]

Seinstra for all their help. The useful feedback of Alexarigieck-

Ratzka, Keith Cover and many other users of the JavaGAT imple

mentation is greatly appreciated. We also like to thank tieng-
mous reviewers for their insightful and constructive comtee

10. REFERENCES

[1] JSch — Java Secure Channel Library.
http://www.jcraft.com/jsch.

[2] The AstroGrid Project. http://www.astrogrid.org.

[3] The Castor Project. http://www.castor.org.

[4] The GridLab project. http://www.gridlab.org.

[5] The Ibis Project. http://www.cs.vu.nl/ibis.

[6] The MyProxy credential management service.
http://grid.ncsa.uiuc.edu/myproxy.

[7] The Open Grid Forum (OGF). http://www.ogf.org.

[8] The TextGrid Project. http://www.textgrid.de.

[9] The Virtual Labs for E-Science Project (VI-e).

http://www.vl-e.nl.

G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser,

T. Kielmann, A. Merzky, R. van Nieuwpoort, A. Reinefeld,

F. Schintke, T. Schdtt, E. Seidel, and B. Ullmer. The Grid

Application Toolkit: Towards Generic and Easy Application

Programming Interfaces for the GriBroceedings of the

IEEE, 93(3):534-550, March 2005.

K. Amin, G. von Laszewski, M. Hategan, R. Al-Ali,

0. Rana, and D. Walker. An abstraction model for a grid

execution frameworklournal of Systems Architecture: the

EUROMICRO Journal52(2):73-87, feb 2006.

ISSN:1383-7621.

D. Churches, G. Gombas, A. Harrison, J. Maassen,

C. Robinson, M. Shields, I. Taylor, and |. Wang.

Programming Scientific and Distributed Workflow with

Triana ServicesConcurrency & Computation: Practice &

Experience18(10):1021-1037, 2006.

K. Cover, J. Verbrunt, J. de Munck, and B. van Dijk. Figia

single equivalent-current-dipole model to MEG data with

exhaustive search optimization is a simple, practical argl v

robust method given the speed of modern computerselm

Frontiers in Biomagnetism, Proceedings of the 15th

International Conference on Biomagnetisimternational

[10]

[11]

[12]

[13]

Congress Series No 1300, Vancouver, B.C., Canada, August

2006. Elevier B.V. ISBN-13:978-0-444-52885-8.

A. Cunei and J. Vitek. PolyD: a flexible dispatching
framework. InProceedings of the 20th annual ACM
SIGPLAN conference on Object oriented programming,
systems, languages, and applications (OOPSLA'2005)
pages 487-503, San Diego, CA, USA, 2005. ACM Press
New York, NY, USA. ISSN:0362-1340.

I. Foster. Globus toolkit version 4: Software for
service-oriented systems. IRIP International Conference
on Network and Parallel Computingages 2-13.
Springer-Verlag LNCS 3779, 2006.

T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijervaén
Laszewski, C. Lee, A. Merzky, H. Rajic, and J. Shalf.
SAGA: A Simple API for Grid Applications. High-level
application programming on the Gri@omputational
Methods in Science and Technolpdg(1):7-20, 2006.

[17] H. Kaiser, A. Merzky, S. Hirmer, and G. Allen. The SAGA

[14]

[15]

[16]

[19]

[20]

[21]

[22]

(23]

C++ Reference Implementation. Library-Centric Software
Design LCSD’06 workshgpPortland, Oregon, October 2006.
R. Medeiros, W. Cirne, F. Brasileiro, and J. Sauve. tsaul
grids: why are they so bad and what can be done about it? In
Fourth International Workshop on Grid Computing
(Grid2003) pages 18-24, Phoenix, Arizona, nov 2003.

H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee,
and H. Casanova. The GridRPC API standardization at the
Grid Remote Procedure Call Working Group of the Global
Grid Forum, 2005. GGF proposed recommendation
(GFD-R.P 52).

H. Rajic, R. Brobst, W. Chan, F. Ferstl, J. Gardiner, /Aad,

B. Nitzberg, and J. Tollefsrud. Distributed Resource
Management Application API Specification 1.0 (DRMAA).
GFD.22, http://www.drmaa.org.

Y. Tanaka, H. Takemiya, H. Nakada, and S. Sekiguchi.
Design, implementation and performance evaluation of
GridRPC programming middleware for a large-scale
computational Grid. IfProceedings of the 5th IEEE/ACM
International Workshop on Grid Computing (Grid2004)
2004.

Y. van der Burgt, I. Taban, M. Konijnenburg, M. Biskup,

M. Duursma, R. Heeren, A. Rompp, R. van Nieuwpoort, and
H. Bal. Parallel Processing of Large Datasets from
NanoLC-FTICR-MS Measurementdournal of the

American Society of Mass Spectromefr§(1):152-161, oct
2006. PubMed ID: 17055738.

A. YarKhan, K. Seymour, K. Sagi, Z. Shi, and J. Dongarra.
Recent Developments in GridSolveternational Journal of
High Performance Computing Applications (Special Issue:
Scheduling for Large-Scale Heterogeneous Platforms),
Robert, Y eds20(1), 2006. Sage Science Press.

