
IST-2001-32133
GridLab - A Grid Application Toolkit and Testbed

Final GAT API Specification: Object Based

Author(s): Andre Merzky, Hartmut Kaiser

Document Filename: Gridlab-1-GAT-0014.FinalAPISpecification

Work package: Grid Application Toolkit

Partner(s): VU

Lead Partner: MPG

Config ID: GridLab-1-FGS-0014-0.1

Document classification: Public

Abstract: The Grid Application Toolkit (GAT) is a Grid Middleware abstraction layer for
application programmers. It is able to communicate with the diverse services of
the Grid environments via adaptors, which implement the GAT API capabilities.
This document provides the final language-independent, object-oriented descrip-
tion of the GAT API.

2005/03/13 – 15:10:39

Final GAT API Specification: Object Based IST-2001-32133

Contents

1 Introduction 3
1.1 Scope of Document . 4
1.2 Structure of Document . 4
1.3 How to read this Document . 5
1.4 Status of this Document . 5
1.5 RFC 2119 and this Document . 5
1.6 UML and this Document . 5

2 API Descriptors List 6
2.1 GAT Application API Descriptors . 6
2.2 GAT Application Utility API Descriptors . 8
2.3 GAT Adaptor Registration API Descriptors . 9
2.4 GAT Adaptor Utility API Descriptors . 9

3 GAT Application API Descriptors Descriptions 10
3.1 The GAT Advertisement Subsystem . 11
3.2 GATAdvertisable . 15
3.3 GATAdvertService . 16
3.4 The GAT File and Streaming Subsystem 19
3.5 GATStreamable . 22
3.6 GATEndpoint . 23
3.7 GATPipeListener . 25
3.8 GATPipe . 26
3.9 GATFileStream . 27
3.10 GATFile . 29
3.11 GATLogicalFile . 32
3.12 The GAT Event and Monitoring Subsystem 34
3.13 GATRequestListener . 37
3.14 GATRequestNotifier . 38
3.15 GATMonitorable . 39
3.16 GATMetric . 41
3.17 GATMetricEvent . 44
3.18 GATMetricListener . 45
3.19 The GAT Resource Subsystem . 46
3.20 GATSoftwareDescription . 48
3.21 GATResourceDescription . 49
3.22 GATSoftwareResourceDescription . 53
3.23 GATHardwareResourceDescription . 54
3.24 GATResource . 55
3.25 GATSoftwareResource . 56
3.26 GATHardwareResource . 57
3.27 GATJobDescription . 58
3.28 GATJob . 59
3.29 GATResourceBroker . 64
3.30 GATReservation . 67

GridLab-1-FGS-0014-0.1 Public 1/97

Final GAT API Specification: Object Based IST-2001-32133

4 GAT Application Utility API 68
4.1 GATObject . 69
4.2 GATContext . 70
4.3 GATSecurityContext . 72
4.4 GAT<T>CredentialService . 75
4.5 GATSelf . 76
4.6 GATLocation . 78
4.7 GATPreferences . 83
4.8 GATStatus . 85
4.9 GATTime . 87
4.10 GATTimePeriod . 88
4.11 GATTable . 89

A External Classes 91
A.1 List . 92
A.2 String . 93
A.3 Buffer . 94

B Glossary 95

GridLab-1-FGS-0014-0.1 Public 2/97

Final GAT API Specification: Object Based IST-2001-32133

1 Introduction

In the Grid community the demand for real applications using the emerging Grid infrastruc-
ture is steadily increasing. Over the last years much of the Grid Middleware advanced from
pure experimental and research state to mature and widely supported software systems. The
complexity of theses systems, both in terms of administration and application usability, remains
high. One of these aspects, the usability for application programmers, is the focus of Grid Ap-
plication Toolkit as developed in the EU GridLab project.

The purpose of the Grid Application Toolkit (GAT) is to provide a complete application oriented
abstraction layer to the underlying Grid middleware. Application oriented here means, that the
toolkit provides those functionality (capabilities) the application programmer needs. Such ca-
pabilities are often composed of several Grid operations, and may involve more than one Grid
service, different protocols etc. Exactly that complexity should be hidden from the application
programmer.

For example, the simple read access to a remote file may involve interaction with a replica loca-
tion service, a data transport service, a GridFTP service, a resource management service, and
a security service. It may involve communcation via LDAP/LDIF, GRAM, HTTP, and GSI, as
protocols or protocol extensions.

All the application programmer should see are calls very much like:

fileCopy (source, destination);

Although that example is somewhat too simple, it surely illustrates the motivation for the present
work. The API specified in this document is supposed to deliver a similar level of abstraction
to the application programmer.

General GAT Design

One of the major strengths and major challanges of the Grid is its diverse nature in terms of
technology used. The range of available Grid services is wide, and constantly growing. Although
the Global Grid Forum (GGF) aims at a global standardization for these services, that efforts
will take time; will not cover all Grid aspects; will not necessarily simplify usage of Grid middle-
ware (on application level); and will not cover all Grid middleware systems (as research projects,
propretiary systems etc.).

The GAT is designed to handle that diversity of Grid middleware. The API exposed to the
application is, as far as possible, independent of the Grid middleware incarnation used.

In general terms, the capabilities provided by the GAT API implementation, a library, are
handled by the GAT Engine. The GAT Engine picks from currently available adaptors, which
implement that specific capability. The adaptors are lightwight modular software elements which
interface to the specific Grid middleware to be used. The technical reasoning for this design is
outlined in the GAT Technical Specification [2].

GridLab-1-FGS-0014-0.1 Public 3/97

Final GAT API Specification: Object Based IST-2001-32133

1.1 Scope of Document

As described, the GAT consists of a library — the GAT Engine — which implements the
GAT API, and which all applications utilize; and a set of adaptors which provide the bindings
between the operations called in the application and the underlying providers, e.g. Grid services.
The GAT API can be split into four parts:

• GAT Application API

This is the API which provides the “Grid” operations. It is called by applications which
want to utilise the Grid infrastructure. This API part is very high level, and application
oriented.

• GAT Application Utility API

This API provides helper calls to support interaction between the application and the GAT
Engine, and to support the exploitation of the GAT Application API.

• GAT Adaptor Registration API

This is the mirror of GAT Application API and is the way in which adaptors provide those
functions.

• GAT Adaptor Utility API

These are the additional functions an adaptor needs to interact with the GAT Engine and
possibly with other adaptors and utility libraries.

This document provides a language-independent, object-oriented description of the GAT Ap-
plication API, and the GAT Application Utility API, based upon a set of descriptors. It is the
second in a sequence of two language-independent API documents. The first is the GAT API
Specification [1]

As the GAT is an adaptation layer, it cannot enforce security in lower-level components — the
adaptors and the capability providers they use. However, the GAT API will provide functions
which allow the application to specify credential information to the underlying adaptors. Adap-
tors may use these information to authenticate to services and to delegate security, as determined
by the underlying security model of these services.

Generally, all GAT calls should have asynchronous equivalents. However, this version of the
API does not provide a general scheme for asynchronous GAT implementations, and touches
that topic only on rare occasions (Monitoring) — such functionality may be added, at a general
level, in later versions.

All GAT calls are reentrant (thread safe), unless noted otherwise.

1.2 Structure of Document

This document consists of three sections. Section 2 lists all the descriptors, with brief summaries
of each, section 3 details the GAT Application API, and 4 details the GAT Application Utility

GridLab-1-FGS-0014-0.1 Public 4/97

Final GAT API Specification: Object Based IST-2001-32133

API. Section A describes classes used but not provided by the GAT. Section B provides a glos-
sary about the terms used in this document.

Throughout the GAT API description in this document a number of examples are listed. That
listing is provided in pseudocode, and is not supposed to represent real code.

The GAT Application API description is annotated with some sections explaining the separate
API subsystems. These subsystems are loosely coupled and related API objects and calls, but
do not define any particular substructure in the API — their nature is purely illustrative.

1.3 How to read this Document

1.4 Status of this Document

This is the final version of this document produced by the GridLab project.

1.5 RFC 2119 and this Document

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC 2119 [4].

1.6 UML and this Document

Keywords in set in sans serif in this document are to be interpreted as described in the The
Unified Modelling Language Reference Manual [5]. In addition, all figures in this document are
written using the UML syntax and vocabulary [5].

GridLab-1-FGS-0014-0.1 Public 5/97

Final GAT API Specification: Object Based IST-2001-32133

2 API Descriptors List

2.1 GAT Application API Descriptors

GATRequest

An instance of this class represents a request, an action triggered by an external process which
is requesting some information or some action to be performed.

GATRequestListener

This interface allows instances of classes which realize this interface to receive GATRequests.

GATRequestNotifier

When a GATRequest instance is created, an instance of a class realizing GATRequestNotifier
is associated with it. When the request has been satisfied the application should invoke the
Respond method on this instance. Only the originating adaptor should invoke the destructor on
this instance.

GATMonitorable

Interface which can be realized by any model elements which are “monitorable.” A model element
is monitorable if it is capable of externalising its state.

GATMetric

An instance of this class represents a metric, a measurable quantity within a monitoring system.

GATMetricEvent

An instance of this class represents an metric event, an event indicating the measurement of a
metric and the associated resultant data.

GATMetricListener

This interface allows instances of classes which realize this interface to receive GATMetricEvents
from instances which are sources of GATMetricEvents.

GATJob

An instance of this class represents a monitorable process that may also be checkpointable.

GATSoftwareDescription

An instance of this class is a description of a piece of software (component) which is to be
submitted to as a job.

GATSoftwareResourceDescription

An instance of this class is a description of software (component) which may be required for a
piece of software to run.

GridLab-1-FGS-0014-0.1 Public 6/97

Final GAT API Specification: Object Based IST-2001-32133

GATHardwareResourceDescription

An instance of this class is a description of a node which may be required by a node or component.

GATResource

A “tagging” interface which is realized by any class which wishes to indicate it represents node or
component; currently both a GATHardwareResource and a GATSoftwareResource realize this
interface.

GATHardwareResource

An instance of this class is an abstract representation of a node which is monitorable.

GATSoftwareResource

An instance of this class is an abstract representation of a component which is monitorable.

GATResourceBroker

An instance of this class is used to broker resources.

GATReservation

An instance of this class is a reservation for a resource.

GATStreamable

GATStreamable is a interface which provides operations for connections to external entities such
as files or other processes.

GATEndpoint

An GATEndpoint represents an endpoint of a GATPipe. An GATEndpoint can be created, and
listened to, and connected to.

GATPipeListener

A class realizing this interface can process GATPipes produced by listening on GATEndpoints.

GATPipe

A GATPipe represents a connection to another process. It realizes GATStreamable and the
communication methods are derived from that interface.

GATFileStream

A GATFileStream represents a seekable connection to an open file, the file may be either remote
or local. It realizes the the GATStreamable interface and all communication operations are as
documented there.

GridLab-1-FGS-0014-0.1 Public 7/97

Final GAT API Specification: Object Based IST-2001-32133

GATFile

An abstract representation of a physical file.

GATLogicalFile

An abstract representation of a set of identical physical files.

GATAdvertiseable

An interface which is realized by any class which wishes to be get advertised in a GATAdvert-
Service.

GATAdvertService

The GATAdvertService allows GATAdvertisable instances to get published to and queried in an
AdvertService. Such an AdvertService is any meta data directory with an hierarchical namespace
attached.

2.2 GAT Application Utility API Descriptors

GATObject

Ancestor of all classes in the GAT API.

GATContext

An instance of this class is the primary GAT state object.

GATSecurityContext

A container for security information.

GAT<T>CredentialService

Classes binding to specific values of the parameter <T> provide methods to return specific
security objects, given an instance of a GATSecurityContext. For example a GATGSICreden-
tialService provides mechanisms to get GSI credentials, a GATSSLCredentialService provides
access to an SSL security object.

GATSelf

This is a singleton class referng to the current application utilizing the GAT.

GATLocation

An instance of this class represents the location of an abstract or physical resource, as for example
an URI.

GATPreferences

An instance of this class represents the user’s preferences for selecting adaptors.

GridLab-1-FGS-0014-0.1 Public 8/97

Final GAT API Specification: Object Based IST-2001-32133

GATStatus

An instance of this class represents an error or an informational message which is returned by a
GAT operation.

GATTime

An instance of this class represents a point in time.

GATTimePeriod

An instance of this class represents a length in time, with uncertain start and end point.

GATTable

An instance of the GATTable class maps keys to values.

2.3 GAT Adaptor Registration API Descriptors

The Adaptor Registration API Descriptors are language specific and are not covered in this
document.

2.4 GAT Adaptor Utility API Descriptors

The Adaptor Utility API Descriptors are language specific and are not covered in this document.

GridLab-1-FGS-0014-0.1 Public 9/97

Final GAT API Specification: Object Based IST-2001-32133

3 GAT Application API Descriptors Descriptions

This section defines the public model elements. Note that private model elements are an imple-
mentation and language-specific detail and are thus not described here.

GridLab-1-FGS-0014-0.1 Public 10/97

Final GAT API Specification: Object Based IST-2001-32133

3.1 The GAT Advertisement Subsystem

The GATAdvertService provides an interface to a generic Grid meta data service. Such an
services is a persistent external repository for any information which may be useful outside the
application itself. Such information MAY include for example

• file names and locations published by the application,

• port and protocol information for contacting the application online,

• information about jobs started by the application.

For that purpose, the GATAdvertService allows one to annotate the appropriate GATObjects
(which have to realize the GATAdvertisable interface) with arbitrary meta data, and to store
that information in a meta data directory. That directory is also called Advertisement Directory,
or Advert Directory (AD).

The meta data are considered to be a list of key value pairs, whereby keys and values are Strings.
More powerful meta data schemes with structured and typed meta data elements seem useful
and possible, but are not specified at the moment.
The meta data directory the information are stored in consists of a simple hierarchical namespace,
where the nodes are tupels of an absolute path in that namespace, the GATObject published
there, and the attached set of meta data.

Namespace

The namespace of the advert directory resambles a standard file system namespace. An absolute
path is a String with a leading delimiter (’/’), plus a number of ’/’ delimited Strings (path
elements or directories), plus a trailing undelimited String (name). A relative path does not
have a leading delimiter, and refers to nodes relative to some other (absolute or relative) path.
Relative Paths can contain ".." as elements, which refer to the previous element of the referred
absolute path.
Examples:

/www.zib.de/visual/data/test.h5 # absolute path
visual/data/test.h5 # relative path
../data/test.h5 # relative path
test.h5 # name of entry

The GATAdvertService has a current working directory, by default ’/’. All relative paths and
names are with respect to that directory initially. Allowed pathneames are as in the POSIX
definition, but of arbitrary length.

Query Language

While querying the GATAdvertService, all entries in a directory are, recursively or non recur-
sively, matched against a specified set of Query Meta Data (QMD). QMD are MD as specified
above, with additional syntax for value elements which are interpreted during execution of the
query. By the use of POSIX regular expressions [7], that syntax supports matching following
cases (examples are in this font):

GridLab-1-FGS-0014-0.1 Public 11/97

Final GAT API Specification: Object Based IST-2001-32133

• presence/absence of a key
key="comment" value="$^" # key is not present

• empty values for a key
key="comment" value="^$" # key is present with empty value

• arbitrary values for a key
key="comment" value=".*" # key can have any or no value
key="comment" value=".+" # key can have any value

• specific values for a key
key="comment" value="^text$" # key can have a specific value

• regular expressions for values for a key
key="comment" value=".*http://.*" # key matches a regex (contains http URL)
key="comment" value="\d+" # key matches a regex (is numeric)

• absolute paths of entries in namespace
key="GAT_PATH" value="/GAT/" # entries in subtree /GAT/

• relative paths of entries in namespace
key="GAT_PATH" value="home/" # entries in relative subtree home/

• names of entries in namespace
key="GAT_NAME" value="^test.*" # entries with name matching ’test*’

• types of GATObjects stored
key="GAT_TYPE" value="GATEndpoint" # entry object of type GATEndpoint

Key strings starting with GAT_ are reserved for internal GAT specific AD entries. Entries with
such keys cannot be used to store meta data. Currently, the user can use GAT_TYPE, GAT_PATH
and GAT_NAMEfor queries. If paths and names are not specified, all entries relative to the current
working directory of the Advert Service are searched.

Use Case Example

Ann runs a server application A, which creates a GATEndpoint Endpoint_A. Application A
listens on that endpoint for incoming client connections in order to serve their requests. A
advertises the GATEndpoint with the GATAdvertService.
Bill runs a client application, B, which wants to communicate with A. B queries the GATAd-
vertService for information about suitable GATEndpoints. Getting the path of such endpoints
in the GATAdvertService hierarchy, B is able to reconstruct the GATEndpoint, and to connect
to it.

Ann creates a GATEndpoint.
Ann creates a GATAdvertService.
Ann advertises the GATEndpoint and meta data.
Ann listens on the GATEndpoint and waits for

incoming client connections

GridLab-1-FGS-0014-0.1 Public 12/97

Final GAT API Specification: Object Based IST-2001-32133

Bill creates a GATAdvertService.
Bill searches the GATAdvertService for suitable

GATEndpoint entries
Bill selects one entry
Bill gets a GATEndpoint from that AD entry
Bill connects to that GATEndpoint (and hence to Ann)

--
--- Synchroneous case ------------------
--

Ann:

GATAdvertService A_AS = new GATAdvertService (...);
GATEndpoint A_EP = new GATEndpoint (...);

String PATH = new String ("/Ann/GAT/Endpoints/EP1");
GATable MD = new GATable (...)
MD.put ("name", "myEndpoint")
MD.put ("protocol", "https")
MD.put ("application", "A")
MD.put ("owner", "Ann_1")
MD.put ("capability", "test")

AS.add (PATH, A_EP, MD);
GATPipe A_Pipe = A_EP.listen ();

// read/write on pipe - communicate with B

Bill:

GATAdvertService B_AS = new GATAdvertService (...);
B_AS.setPWD ("/Ann/GAT/");

bool RECURSION = True;
GATTable QUERY = new GATTable ()
QUERY.put ("GAT_TYPE", "GATEndpoint")
QUERY.put ("protocol", "https")
QUERY.put ("application", ".+")
QUERY.put ("owner", "Ann_\d+")
QUERY.put ("capability", "test.*")

list<String> PATHS = B_AS.find (QUERY, RECURSION);
GATEndpoint B_EP = B_AS.GetAdvertiseable (PATHS[0]);
GATPipe B_Pipe = B_EP.connect ();

// read/write on pipe - communicate with A

GridLab-1-FGS-0014-0.1 Public 13/97

Final GAT API Specification: Object Based IST-2001-32133

GridLab-1-FGS-0014-0.1 Public 14/97

Final GAT API Specification: Object Based IST-2001-32133

3.2 interface GATAdvertisable

Description

An interface which is realized by any class which wishes to get advertized.

Classes realizing this interface need to provide a constructor which takes a serialization of the
class (a String), and creates a class instance from the state information stored in that serializa-
tion. That is effectively the only way to de-serialice a GATAdvertisable object.

Apart from the constructor, the only operation for this interface is Serialize, which takes care of
the encapsulation of the state of a GATAdvertiseable instance in a String. Though this method
will likely not be used by the majority of application programmers directly, it will be used by
adaptor writers who provide the functionality of a GATAdvertService.

Operations

Constructor This constructor takes the serialized state of an GATAdvertisable instance, and
re-creates that instance.
Inputs:

GATContext — context — GATContext to be used for the recreated object instance.

String — serial — Contains the instance’s serialization.

Serialize This operation obtains the serialized state encapsulated by this instance.
Outputs:

String — serial — Contains this instance’s serialization.

GridLab-1-FGS-0014-0.1 Public 15/97

Final GAT API Specification: Object Based IST-2001-32133

3.3 class GATAdvertService
specializes GATObject
realizes GATMonitorable

Description

The GATAdvertService allows GATAdvertisable instances to get published to and queried in
an advert directory. Such an advert directory is a meta data directory with an hierarchical
namespace attached.

Use cases

In this use case the client wishes to advertise an GATAdvertisable instance using a GATAdvert-
Service. The client first creates a String describing the path at which they wish to advertise
the GATAdvertisable instance. Next the client creates an instance of the GATTable class and
populates it with name/value pairs which are to be the meta-data associated with the GATAd-
vertisable instance. The client then creates an instance of the GATAdvertService class and calls
the operation Add on this instance. This process is diagrammed in the following sequence diagram
1:

Figure 1: A sequence diagram for an instance of the class GATAdvertService.

In this use case the client wishes to find the path of GATAdvertisable instances in the GATAd-
vertService. The client first creates GATTable instance and populates it with name/value pairs
which are to be the meta-data associated with the GATAdvertisable instance they wish to find.
The client then creates an instance of the GATAdvertService class and calls the operation Find
on this instance. This process is diagrammed in the following sequence diagram 2:

Operations

Constructor Creates an instance of the GATAdvertService corresponding to the passed GAT-
Context.

Inputs:

GATContext — context — Used to broker resources.

GATPreferences — preferences — User preferences.
(OPTIONAL)

GridLab-1-FGS-0014-0.1 Public 16/97

Final GAT API Specification: Object Based IST-2001-32133

Figure 2: A sequence diagram for an instance of the class GATAdvertService.

Destructor Destroyes the instance of GATAdvertService.

Add Add an Advertizable instance and related meta data to the GATAdvertService, at path
(absolute or relative to PWD). If an GATAdvertService entry exists at the specified path, that
entry gets overwritten, and a warning is issued.
Inputs:

GATAdvertiseable — advert — instance to be entered into the GATAdvertService.

GATTable — metaData — Meta data to be associated with the passed GATAdvertiseable.

String — path — Path (relative to PWD) of the new entry.

Delete Deletes the specified entry from the GATAdvertService.
Inputs:

String — path — Path of the entry to be deleted.

GetMetaData Get the meta data for the specified AD entry. The returned meta data can
be destroyed at any time.
Inputs:

String — path — Path of the entry of interest.

Outputs:

GATTable — metaData — Meta data of the entry of interest.

GridLab-1-FGS-0014-0.1 Public 17/97

Final GAT API Specification: Object Based IST-2001-32133

GetAdvertisable Get the Advertizable instance for the specified GATAdvertService entry.
The returned instance can be destroyed at any time.
Inputs:

String — path — Path of the entry of interest.

Outputs:

GATAdvertiseable — advert — instance for the entry of interest.

Find Query the GATAdvertService for entries matching the specified set of meta data. The
returned paths can be destroyed at any time.
Inputs:

GATTable — metaData — Meta data describing the entries to be searched for.

Outputs:

List of Strings — paths — Paths, each pointing to a matching entry.

SetPWD Specify the element of the GATAdvertService namespace to be used as reference for
relative paths.
Inputs:

String — path — New absolute or relative reference path.

GetPWD Returns the current element of the GATAdvertService namespace used as reference
for relative paths.
Outputs:

String — path — Absolute reference path.

GridLab-1-FGS-0014-0.1 Public 18/97

Final GAT API Specification: Object Based IST-2001-32133

3.4 The GAT File and Streaming Subsystem

An application exchanging data and information via data streams can use the GAT Streaming
System. The system inherits from the known concepts of BSD sockets, but simplifies that
interface to enable independent implementation.
The principal concept in GAT is to create an instance of GATEndpoint, and (as server) to listen
on it for incoming connections, or (as client) connect to it. Both operations result in an instance
of a GATPipe, which can be used for two sided communication. A third class of the system,
GATFileStream, provides approximately the same interface for remote file access.
In order to motivate the design for the GATEndPoint and GATPipe objects, a simple use case
is listed here.

GATPipe Use Case

Ann creates a communication endpoint (A) and advertises it. Ann can further perform a listen
on the endpoint, and gets a GATPipe (pipe A) on success.
Bill retrieves an advertisement from an GATAdvertService and uses it to construct a communi-
cation endpoint (GATEndpoint B), and tries to connect to A - he gets a GATPipe pipe B. A
connection is established between pipe A and pipe B.
The advertisment is still valid and can be used by another party to try to establish a connection
with Ann.

Ann creates a GATEndpoint.
Ann uses the GATEndpoint to create a new GATPipe (A)

by calling listen on endpoint (callback).
Ann advertises the GATEndpoint.

Bill gets the GATEndpoint from a Advert Directory.
Bill creates a new GATPipe (B) using the GATEndpoint by calling

connect on it.

Ann and Bill can now write down their GATPipes
(A and B respectively) or read data from them.

Ann can continue to listen.

Cees does the same as Bill, and gets a third pipe.

--
--- Synchroneous case ------------------
--

Ann:

GATEndpoint A = new GATEndpoint (...)
GATAdvertService AS = new GATAdvertService (...)
GATPipe pipe_A1 = A.listen (...)
AS.add (A, ...)
pipe_A1.read (...)

GridLab-1-FGS-0014-0.1 Public 19/97

Final GAT API Specification: Object Based IST-2001-32133

pipe_A1.write (...)
delete (pipe_A1);

GATPipe pipe_A2 = A.listen (...)
pipe_A2.read (...)
pipe_A2.write (...)
delete (pipe_A2);
delete (A);

Bill:

GATAdvertService AS = new GATAdvertService (...)
list<String> paths = AS.query (...)
GATEndpoint B = AS.getAdvertizable (paths[0])
GATPipe pipe_B = B.connect ()
pipe_B.write (...)
pipe_B.read (...)
delete (pipe_B);
delete (B);

Cees:

GATAdvertService AS = new GATAdvertService (...)
list<String> paths = AS.query (...)
GATEndpoint C = AS.getAdvertisable (paths[0])
GATPipe pipe_C = B.connect ()
pipe_C.write (...)
pipe_C.read (...)
delete (pipe_C);
delete (C);

--
--- Asynchroneous case -----------------
--

Ann listens with GATPipeListener, and then uses the GAT event
servicing mechanism to serve incoming pipes.

Ann:

GATEndpoint A = new GATEndpoint (...)
GATPipeListener listen_A = new my_GATPipeListener (...)
GATAdvertService AS = new GATAdvertService (...)
AS.add (A, ...)
A.listen (listen_A, ...)
// do work (callback handling)
delete (A);
delete (listen_A);

GridLab-1-FGS-0014-0.1 Public 20/97

Final GAT API Specification: Object Based IST-2001-32133

sub GATPipeListener:ProcessPipe (GATPipe pipe_A)
{
pipe_A.read (...)
pipe_A.write (...)
pipe_A.close (...)

}

Bill:

GATAdvertService AS = new GATAdvertService (...)
list<String> paths = AS.query (...)
GATEndpoint B = AS.getAdvertisable (paths[0])
GATPipe pipe_B = B.connect ()
pipe_B.write (...)
pipe_B.read (...)
delete (pipe_B);
delete (B);

Possible extensions

Depending on demand, it may be useful to extend the present Stream API. For example, the
ability to perform striped or multiplexed reading/writing to collections of streams may be useful.
Such things can be implemented on top of the present spec, and are to be defined separately.

GridLab-1-FGS-0014-0.1 Public 21/97

Final GAT API Specification: Object Based IST-2001-32133

3.5 interface GATStreamable

Description

GATStreamable is a interface which provides operations for connections to external entities such
as files or other processes.

To send data down a GATStreamable it is necessary to construct a Buffer, and pack it with
data. Similarly to receive data a buffer must be created in which the data will be stored.

The method of setting up a connection is the responsibility of the realizing class (e.g. GAT-
FileStream or GATPipe.)

Operations

Read Reads from this GATStreamable into the given Buffer.

This is a blocking call and only returns if the buffer is full or if an error occurred. On error, the
buffer MAY contain partially read data.

Inputs/Outputs:

Buffer — buffer — Buffer into which data are to be transferred

Outputs:

Integer — nbytes — Number of bytes successfully read into the buffer.

Write Writes data from the given Buffer through the GATStreamable. The buffer is not mod-
ified.

This is a blocking call and only returns when all the data in the buffer has been sent, or if an
error occurs. On error, the number of bytes written is returned.

Inputs:

Buffer — buffer — Buffer from which data are to be transferred.

Outputs:

Integer — nbytes — Number of bytes successfully written.

Close Closes this GATStreamable instance.

GridLab-1-FGS-0014-0.1 Public 22/97

Final GAT API Specification: Object Based IST-2001-32133

3.6 class GATEndpoint
specializes GATObject
realizes GATMonitorable, GATAdvertiseable

Description

An GATEndpoint represents an end of a byte stream. Depending on how a GATEndpoint gets
created, it can be listened to or connected to. In both cases, the endpoint returns a GATPipe.
Hence, a GATEndpoint acts in fact as a GATPipe factory: multiple GATPipes can be created
from it by repeatedly listening for incoming connections. The behaviour is similar to listening
on a BSD socket.

GATEndpoints obtained from the GATAdvertService cannot be listened to.

GATPipes created from endpoints continue to live after the GATEndpoint instance is destroyed.

Operations

Constructor Constructs a unconnected instance of this class. The parameters given determine
the endpoint attributes, such as host, port, protocol etc, and are interpreted by the adaptor.

Inputs:

GATContext — context — Used to broker resources.

GATTable — parameters — Endpoint construction parameters (OPTIONAL).

GATPreferences — preferences — User preferences for this instance.
(OPTIONAL)

Destructor Destroys this object GATEndpoint. The destructor does not effect (e.g. destroy)
any GATPipes created from this endpoint.

Connect When a GATEndpoint is obtained from an Advert Directory, it can be used to create
a GATPipe connected to the advertising application, by calling connect on the GATEndpoint
instance. This method takes no parameters. The GATEndpoint can be destroyed at any time
without affecting the obtained GATPipe.
Output :

A GATPipe connected to the endpoint.

Listen The creator of an GATEndpoint can use the GATEndpoint to create GATPipes, which
represent incoming connections. This is done by calling Listen on the GATEndpoint instance.
The GATEndpoint can be destroyed at any time without affecting the obtained GATPipe.
Output :

A GATPipe connected to the endpoint.

GridLab-1-FGS-0014-0.1 Public 23/97

Final GAT API Specification: Object Based IST-2001-32133

Listen The creator of an GATEndpoint can use the GATEndpoint to create GATPipes, which
represent incoming connections. This is done by calling Listen on the GATEndpoint instance.
This call is asynchroneous, and returns immediately. The GATPipe creation is performed on
the passed GATPipeListener object. The GATEndpoint can be destroyed at any time without
affecting the obtained GATPipe.
Input :

GATPipeListener — listener — GATPipeListener object which handles incoming connec-
tions.

GridLab-1-FGS-0014-0.1 Public 24/97

Final GAT API Specification: Object Based IST-2001-32133

3.7 interface GATPipeListener

Description

This interface allows instances of classes which realize this interface to process GATPipes produced
by listening on GATEndpoints.

Operations

ProcessPipe An instance of a class realizing this interface receives GATPipes produced by
listening on GATEndpoints through calls to this operation.

Input :

GATPipe — pipe — The new GATPipe.

GridLab-1-FGS-0014-0.1 Public 25/97

Final GAT API Specification: Object Based IST-2001-32133

3.8 class GATPipe
specializes GATObject
realizes GATMonitorable, GATStreamable

Description

A GATPipe represents a connection to another process. It realizes GATStreamable and the
communication methods are derived from that interface.

A GATPipe can get created from an GATEndpoint only, by calling its Listen or Connect meth-
ods.

Operations

No operations are defined.

Destructor Closes the connection, destroys this GATPipe object.

GridLab-1-FGS-0014-0.1 Public 26/97

Final GAT API Specification: Object Based IST-2001-32133

3.9 class GATFileStream
specializes GATObject
realizes GATMonitorable, GATStreamable

Description

A GATFileStream represents a seekable connection to open file, the file MAY be either remote
or local. It realizes the the GATStreamable interface and all communication operations are as
documented there. The GATFileStream semantics is similar to a standard Unix file-descriptor.
It provides methods to query the current position in the file and to seek to new positions.
To write data to a GATFileStream it is necessary to construct a Buffer, and pack it with data.
Similarly, in order to read data a buffer must be created in which the data will be stored.
Since the file MAY be remote, writes and reads MAY either be blocking, or asynchronous.
Asynchronous writes or reads must be completed by appropriate call. These operations are
present as a result of realizing the GATStreamable interface and are as documented there.

Operations

Constructor This creates a GATFileStream attached to the physical file at the specified GAT-
Location. The file MAY be opened in several modes:

GATFileStream.GAT Read — Open file for reading. The stream is positioned at the
beginning of the file.

GATFileStream.GAT Write — Truncate file to zero length or create file for writing. The
stream is positioned at the beginning of the file.

GATFileStream.GAT Readwrite — Open for reading and writing. The stream is posi-
tioned at the beginning of the file.

GATFileStream.GAT Append — Open for appending (writing at end of file). The file is
created if it does not exist. The stream is positioned at the end of the file.

Inputs:

GATContext — context — Used to broker resources.

GATLocation — location — Location of the file to open.

Integer — mode — Mode to open the file (read, write, readwrite, or append; class con-
stants).

GATPreferences — preferences — User preferences.
(OPTIONAL)

Destructor Closed the stream, destroys this GATFileStream object.

GridLab-1-FGS-0014-0.1 Public 27/97

Final GAT API Specification: Object Based IST-2001-32133

Seek This changes the current position in the file. The position can either be calculated from
the current position in the file or from the beginning or end.

Inputs:

Integer — off — Offset from whence.

Integer — whence — “Whence”, one of beginning, current or end of file.

Class Constants

GAT Read — Constant used to indicate read mode

GAT Write — Constant used to indicate write mode

GAT Readwrite — Constant used to indicate readwrite mode

GAT Append — Constant used to indicate append mode

GridLab-1-FGS-0014-0.1 Public 28/97

Final GAT API Specification: Object Based IST-2001-32133

3.10 class GATFile
specializes GATObject
realizes GATMonitorable, GATAdvertiseable

Description

An abstract representation of a physical file.

An instance of this class presents an abstract, system-independent view of a physical file. User
interfaces and operating systems use system-dependent pathname strings to identify physical
files. GAT, however, uses an operating system independent pathname string to identify a phys-
ical file. A physical file in GAT is identified by a URI.

An instance of this GATFile class allows for various high-level operations to be performed on a
physical file. For example, one can, with a single API call, copy a physical file from one location
to a second location, move a physical file from one location to a second location, delete a physical
file, and perform various other operations on a physical file. The utility of this high-level view
of a physical file is multi-fold. The client of an instance of this class does not have to concern
themselves with the details of reading every single byte of a physical file when all they wish to
do is copy the physical file to a new location. Similarly, a client does not have to deal with all
the various error states that can occur when moving a physical file (Have all the various bytes
been read correctly? Have all the various bytes been saved correctly? Did the deletion of the
original file proceed correctly?); the client simply has to call a single API call and the physical
file is moved.

Use cases

In this use case the client wishes to move a physical file at a physical location, specified by the
GATLocation instance location1, to a physical location, specified by the GATLocation instance
location2. This is done by creating a GATFile instance which corresponds to the physical file at
the GATLocation location1, then calling the Move operation on the so created GATFile instance.
This is diagramed in the figure 3:

Operations

Constructor Constructs a GATFile instance which corresponds to the physical file identified
by the passed GATLocation and whose access rights are determined by the passed GATContext.

Inputs:

GATLocation — location — Location which represents the URI corresponding to the
physical file.

GATContext — context — Used to determine the access rights for this GATFile.

GATPreferences — preferences — User preferences for this GATFile.
(OPTIONAL)

Equals Tests this GATFile for equality with the passed GATObject.

If the given GATObject is not a GATFile, then this operation immediately returns False.

GridLab-1-FGS-0014-0.1 Public 29/97

Final GAT API Specification: Object Based IST-2001-32133

Figure 3: A sequence diagram for an instance of the class GATFile.

If the given GATObject is a GATFile, then it is deemed equal to this instance if a GATLocation
object constructed from this GATFile’s location and a GATLocation object constructed from the
passed GATFile’s GATLocation are equal as determined by the Equals operation of GATLoca-
tion.

Inputs:

GATObject — object — GATObject to test for equality.

Outputs:

Bool — equal — Boolean indicating equality.

Destructor Destroys this GATFile object.

Copy This operation copies the physical file represented by this GATFile instance, if such a
physical file exists, to a physical file identified by the passed GATLocation. After successful
completion of this operation this GATFile instance will not correspond to the new physical file.

Inputs:

GATLocation — targetLocation — Location to which to copy the physical file correspond-
ing to this GATFile instance.

Integer — mode — overwrite mode for copy operation.

Move This operation moves the physical file represented by this GATFile instance to a physical
file identified by the passed GATLocation. The mode specifies if the target file should be over-
written if it already exists. After successful completion of this operation this GATFile instance

GridLab-1-FGS-0014-0.1 Public 30/97

Final GAT API Specification: Object Based IST-2001-32133

will correspond to the new physical file. The mode is as in the copy operation.

Inputs:

GATLocation — targetLocation — Location to which to move the physical file correspond-
ing to this GATFile instance.

Integer — mode — overwrite mode for copy operation.

Delete This operation deletes the physical file represented by this GATFile instance.

IsReadable Returns a boolean True if the physical file corresponding to this instance exists
and if the physical file corresponding to this instance is readable .

Outputs:

Bool — readable — Boolean indicating readability.

IsWritable Returns a Boolean True if the physical file corresponding to this instance exists
and if the physical file corresponding to this instance is writable.

Outputs:

Bool — writable — Boolean indicating writability.

GetLength Returns an Integer indicating the length in bytes of the physical file corresponding
to this instance; then Integer 0 is returned if the corresponding physical file does not exist or if
the corresponding physical file has length 0.

Outputs:

Integer — length — Length of the physical file corresponding to this instance, in bytes.

LastWriteTime Returns the time at which the corresponding physical file was last written;
the Integer 0 is returned if the corresponding physical file does not exist.

Outputs:

GATTime — lastWriteTime — Time at which this file was last written.

GridLab-1-FGS-0014-0.1 Public 31/97

Final GAT API Specification: Object Based IST-2001-32133

3.11 class GATLogicalFile
specializes GATObject
realizes GATMonitorable, GATAdvertiseable

Description

An abstract representation of a set of identical physical files.

A GATLogicalFile is an representation of a set of identical physical files. This abstraction is
useful for a number of reasons, e.g. if one wishes to replicate a physical file which is at one
GATLocation to a second GATLocation. Normally, one takes all the data at the first GATLoca-
tion and replicates it to the second GATLocation even though the “network distance,” between
the first and second GATLocation may be great. A better solution to this problem is to have
a set of identical physical files distributed at different locations in “network space.” If one then
wishes to replicate a physical file from one GATLocation to a second GATLocation, GAT can
then first determine which physical file is closest in “network space” to the second GATLocation,
chose that physical file as the source file, and copy it to the destination GATLocation. Similarly,
the construct of a GATLogicalFile allows for migrating programs to, while at a given point in
“network space,” use the closest physical file in “network space’ to its physical location.

A logical file has a logical file name. That name space is unique in the used namespace. The
actual implementation of that namespace is done in a replica catalog, which maps that logical
name to one or more physical names, as described above.

Since GAT may abstract from various implementations and incarnations of replica catalogs, the
used name space is not necessarily uniq anymore. During the creation of the logical file, the
catalog (and hence the name space) to be used can be specified, by adding a valid entry for the
key “catalog”.

The site configuration for GAT, and also the user specific configuration for GAT can specify
what catalogs are available, by mapping a replica catalog service location to a key string.

Operations

Constructor This constructor creates a GATLogicalFile with passed name. As initial member,
one location for a physical file MAY be given. The preferences MAY contain a key “catalog”,
whose value describes a replica catalog namespace to be used for the logical file name. If not
given, a default catalog is used.

Inputs:

GATContext — context — Used to broker resources.

String — name — name in logical name space

Integer — mode — creation mode

GATLocation — location — Location of one initial physical file in this GATLogicalFile.
(OPTIONAL)

GridLab-1-FGS-0014-0.1 Public 32/97

Final GAT API Specification: Object Based IST-2001-32133

GATPreferences — preferences — User preferences for this instance.
(OPTIONAL)

The mode flag defines, if the logical file is created, and if it should be truncated.

Destructor Destroys this GATLogicalFile instance.

AddFile Adds the passed GATFile instance to the set of physical files represented by this
GATLogicalFile instance.

Inputs:

GATFile — file — File to add to the set of physical files represented by this GATLogicalFile
instance.

RemoveFile Removes the passed GATFile instance from the set of physical files represented
by this GATLogicalFile instance.

Inputs:

GATFile — file — File to remove from the set of physical files represented by this GAT-
LogicalFile instance.

Replicate Replicates the logical file represented by this instance to the physical file specified
by the passed GATLocation.

Inputs:

GATLocation — location — Location of the new physical file.

GetFiles Returns a List of GATFile instances each of which is a GATFile corresponding to a
physical file represented by this GATLogicalFile instance.

Inputs:

List of GATFiles — files — GATFile instances which correspond to physical files for this
GATLogicalFile instance.

GridLab-1-FGS-0014-0.1 Public 33/97

Final GAT API Specification: Object Based IST-2001-32133

3.12 The GAT Event and Monitoring Subsystem

The GAT Event and Monitoring Subsystem covers both interaction with Grid monitoring ser-
vices, and application defined events and actions.

An application may state that it can respond to some command (for example an externally trig-
gered checkpoint), or provide additional metrics above those provided by a monitoring service.
The application does this by providing a callback for each command, and for each piece of infor-
mation it may provide. This is done by creating an object which realizes the GATRequestListener
interface, and passing it to the AddRequestListener operation of the GATSelf object.

When an external process triggers a request, the GATEngine invokes the operation ProcessRe-
quest on the GATRequestListener registered, through a call to AddRequestListener, to handle
this request type. The GATEngine passes it an object which realizes the GATRequestNotifier
interface. This GATRequestNotifier is used to return the results of the command or information
request. The application MAY immediately perform the command or determine the information,
then invoke the Respond operation on the passed GATRequestNotifier to respond, or it MAY
invoke the Respond operation at a later time; e.g. in the case of checkpointing, the application
MAY need to return to its normal control flow and only later notify the GATEngine that check-
pointing has been completed.

Checkpointing

Currently the only command which MUST be supported by code implementing the GAT API
is checkpointing.

As mentioned previously, when an external process triggers a command the GATEngine invokes
ProcessRequest on the GATRequestListener registered to handle this command type. This
ProcessRequest call passes the registered GATRequestListener a GATRequestNotifier. When
this command is complete, the GAT application calls the Respond operation on this GATRe-
questNotifier. The GATTable passed to this Respond operation SHOULD contain the following
keys

Checkpoint Files — a String with paths to any associated checkpoint files each of these
paths MUST be formatted as if they were to be passed to the GATLocation constructor;
furthermore, each path is quoted and comma-separated.

Restart Files — a String with paths to any other files which MAY be required in a restart
case, e.g. new parameter files, etc. Again, these paths MUST be formatted as if they were
to be passed to the GATLocation constructor, and, as above, they are quoted and comma
separated.

Information Requests

Information requests are used to provide additional GATMetric’s to a monitoring system. When
registering such additional GATMetric’s through a call to the AddRequestListener operation, a
GATTable MUST be passed to the AddRequestListener operation. This GATTable is used to
describe the new GATMetric which the application is allowing external processes to monitor. To
describe this new GATMetric fully, this GATTable MUST have keys with values of the following
types

GridLab-1-FGS-0014-0.1 Public 34/97

Final GAT API Specification: Object Based IST-2001-32133

Key Value Type Description
Metric parameters GATTable The metric parameters of the new metric.
Metric measurement type Integer The measurement type of the new metric.
Metric data type Type A language specific value type indicator
Metric unit String A String indicator of the measured value’s unit.

Table 1: Information Requests: The key/values pairs defining a GATMetric.

More detail on the various values can be found in the GATMetric class documentation. In addi-
tion to the above information the call to the operation AddRequestListener contains a parameter
which names the so constructed GATMetric. Note, the call to the operation AddRequestListener
MAY fail if another GATMetric with the same name already exists — an error is issued in that
case.

Upon an external process requesting information for a so registered GATMetric, the GATEngine
calls ProcessRequest on the GATRequestListener registered to handle this information request.
This ProcessRequest call passes the registered GATRequestListener a GATRequestNotifier.
When the requested information has been gathered and is ready to be sent to the external
process, the GAT application MUST call the Respond operation on this GATRequestNotifier.
The application passes this Respond operation a GATTable. This GATTable is used to describe
the GATMetricEvent the remote process will receive as a result of its information request. So,
the GATTable passed to this Respond operation MUST contain the following keys with values
of the following types

Key Value Type Description
Metric value Object A language specific structure giving the metric’s value.
Metric timestamp GATTime A GATTime indicating information’s harvest time.

Table 2: Information Requests: The key/values pairs defining a GATMetricEvent.

Use Cases

Checkpointing

The application indicates that it can respond to checkpointing requests; another GAT application
checkpoints it by invoking the Checkpoint operation on the corresponding GATJob object.

The application creates an instance of a class realizing GATRequestListener, L.

The application passes L to GATSelf.AddRequestListener, stating that it is a “command”
request listener, and that its name is “checkpoint”. The GATTable can be empty.

At appropriate points in the flow of control of the application, it invokes GATCon-
text.ServiceActions.

When an adaptor receives a checkpoint request, it creates a GATRequestNotifier, N and
invokes the ProcessRequest operation on L with this N.

GridLab-1-FGS-0014-0.1 Public 35/97

Final GAT API Specification: Object Based IST-2001-32133

When L.ProcessRequest is invoked, the application notes that a checkpoint has been re-
quested, and saves the GATRequestNotifier, N, for later use, then returns.

At a later point in processing, after the return of ServiceActions and checkpointing has
been completed, the application invokes N.Respond.

When N.Respond is invoked, the adaptor informs the process which invoked the checkpoint
of the data returned in the GATTable.

Application can provide number of iterations

The application indicates that it can respond to requests for the number of iterations since
application startup; another GAT application requests this information by using the monitoring
operations.

The application creates an instance of a class realizing GATRequestListener, L.

The application passes L to GATSelf.AddRequestListener, stating that it is an “infor-
mation” request listener, and that its name is, say, “iteration counter”. The GATTable
provides an empty GATTable for “Metric parameters”, the constant Continuous for “Met-
ric measurement type”, “integer” for “Metric data type”, and “iteration” for “Metric unit”.

At appropriate points in the flow of control of the application, it invokes GATCon-
text.ServiceActions.

When an adaptor receives a request for this information, it creates an instance of a class
realizing GATRequestNotifier, N, and invokes the ProcessRequest operation on L with this
N.

When L.ProcessRequest is invoked, the application determines its iteration and invokes
N.Respond with the iteration stored under “Metric value”, and the current time stored
under “Metric timestamp”.

When N.Respond is invoked, the adaptor informs the process which requested the infor-
mation of the data returned in the GATTable.

GridLab-1-FGS-0014-0.1 Public 36/97

Final GAT API Specification: Object Based IST-2001-32133

3.13 interface GATRequestListener

Description

This interface allows instances of classes which realize this interface to receive GATRequestNoti-
fier’s.

Operations

ProcessRequest An instance of a class realizing this interface receives GATRequestNotifier’s
through calls to this operation when it is registered to receive such events.

Inputs:

GATRequestNotifier — requestnotifer — GATRequestNotifier used to signal the requests
results operation call.

GridLab-1-FGS-0014-0.1 Public 37/97

Final GAT API Specification: Object Based IST-2001-32133

3.14 interface GATRequestNotifier

Description

When a particular type of request is sent to an application from a remote process, be it a com-
mand request or a information request, the ProcessRequest method is called on the GATRe-
questListener which has been registered to handle this particular type of request. When this
ProcessRequest method is called, it is passed a GATRequestNotifier. This GATRequestNotifier
is used by the ProcessRequest method to return to the remote process data pertinent to the
remote process’s request, be it GATMetricEvent data or command data.

Operations

Respond Passes any pertinent data back to the invoker.
Inputs:

GATTable — data — Return Data containing any response data.

GridLab-1-FGS-0014-0.1 Public 38/97

Final GAT API Specification: Object Based IST-2001-32133

3.15 interface GATMonitorable

Description

Interface which can be realized by any model elements which are “monitorable.” A model element
is monitorable if it is capable of externalising its state.

Use cases

In this use case the client wishes to register an instance of the class GATMetricListener to
receive GATMetricEvents from an instance of the class GATMonitorable. In other words, the
client wants the GATMetricListener instance to “monitor” the GATMonitorable instance. The
client does so by obtaining an instance of the GATMetric class from the GetMetrics operation on
the GATMonitorable interface, then providing appropriate values for the various parameters of
this GATMetric instance. After doing so, the client passes the so modified GATMetric instance
along with the desired GATMetricListener instance to the operation AddMetricListener. This is
diagrammed in the figure 4

Figure 4: A sequence diagram for an instance of the interface GATMonitorable.

Operations

AddMetricListener Upon successful completion adds the passed instance of a GATMetricLis-
tener to the list of GATMetricListeners which are notified of GATMetricEvents by an instance
of a class realizing this interface. Upon successful completion of this operation the passed GAT-
MetricListener is notified of GATMetricEvents which correspond to GATMetric instance passed
to this operation. The GATMetric instance passed to this operation must be obtained from the
GetMetrics operation on this instance, and appropriate values for all the parameters of the passed
GATMetric instance must be supplied or this operation will not complete successfully.

Inputs:

GATMetricListener — listener — GATMetricListener to notify of GATMetricEvents.

GATMetric — metric — GATMetric corresponding to the GATMetricEvents for which
the passed GATMetricListener will be notified.

GridLab-1-FGS-0014-0.1 Public 39/97

Final GAT API Specification: Object Based IST-2001-32133

RemoveMetricListener Upon successful completion removes the passed GATMetricListener
from the list of GATMetricListeners which are notified of GATMetricEvents corresponding to the
passed GATMetric instance. The GATMetric instance passed to this operation must be obtained
from the GetMetrics operation on this instance, and appropriate values for all the parameters of
the passed GATMetric instance must be supplied or this operation will not complete successfully.

Inputs:

GATMetricListener — listener — GATMetricListener to notify of GATMetricEvents.

GATMetric — metric — GATMetric corresponding to the GATMetricEvents for which
the passed GATMetricListener has been notified.

GetMetrics Upon successful completion returns a List of GATMetric instances. Each GAT-
Metric instance in this List corresponds to a metric which can be monitored on this instance. To
monitor the metric corresponding to a returned GATMetric instance one must supply appropri-
ate values for all the parameters of the GATMetric instance and pass the modified GATMetric
instance to the operation AddMetricListener with an appropriate GATMetricListener.

Outputs:

List of GATMetrics — metrics — Each GATMetric instance in this List corresponds to a
metric which can be monitored on this instance.

GetMeasurement Upon successful completion, this function returns to the caller a GATMet-
ricEvent corresponding to the monitorable quantity indicated by the passed GATMetric. Each
GATMetric corresponds to a quantity which can be measured. Some GATMetric instances cor-
respond to a quantities which can be measured in a continuous manner – such as the time one
a remote computer – other GATMetric instances correspond to quantities which can be mea-
sured in a event-like manner – such as the key pressed by the user. If a GATMetric instance
corresponds to continuous quantity, then this function allows one to measure such a quantity.
One passes the GATMetric instance to this function and obtains in result a GATMetricEvent
providing the corresponding measured quantity measured while this function was being called.

Inputs:

GATMetric — metric — GATMetric corresponding to the continuous quantity the caller
wishes to measure. This metric must correspond to a continuous metric.

Outputs:

GATMetricEvent — metricEvent — A GATMetricEvent instance providing the measured
quantity corresponding to the passed metric.

GridLab-1-FGS-0014-0.1 Public 40/97

Final GAT API Specification: Object Based IST-2001-32133

3.16 class GATMetric
specializes GATObject

Description

An instance of this class represents a metric, a measurable quantity within a monitoring system.
There are two types of metrics a monitoring system must deal with:

Local metrics — Local metrics are metrics that are directly measured on a resource
(e.g. on the local host or on a running application). These can be highly dependent on
the physical parameters of the resource. Thus, local metrics originating from two different
resources are not necessarily comparable (E.g. 1 hour CPU time on a 1 GHz Intel processor
is different than 1 hour CPU time on an 800 MHz PPC processor although the numeric
values are equal.) However resource administrators who know the configuration of the
resource need local metrics for detailed monitoring of the status and operation of the
resource.

Grid metrics — Grid metrics are metrics that have predefined semantics thus, they are
resource independent. Grid metrics are derived from one or more local metrics by apply-
ing a specific, well defined algorithm (such as unit conversion, aggregation or averaging).
Because of this transformation grid metrics MAY have less precision or they could be less
specific but are guaranteed to be comparable between different resources. Unlike local met-
rics which a local resource is free to change grid metrics must be agreed upon, standardised
and introduced by community consensus.

Instances of the class GATMetric deal with both types of metrics.

A GATMetric can only be measured if there exists a sensor which can measure the quantity
corresponding to the GATMetric. Such sensors are created by sensor developers and must em-
bedded in a resource to allow the corresponding GATMetric or GATMetrics to be measured.
(The creation of sensors is beyond the scope of this document and as such will not be covered.)
Such sensors, once created, define the GATMetric or GATMetrics which they allow to be mea-
sured.

A metric definition contains the following information:

• Metric name

• Metric parameters

• Metric measurement type

• Metric data type

• Metric Unit

Metric name The Metric name is used to identify the metric definition (e.g. CPU usage). It
consists of dot separated words, e.g. host.cpu.user. The last component of a metric name is the
actual name of the metric, the preceding components are called scope. The scope can be used
to group metrics as well as to differentiate between similar metrics defined at different levels (for
example, CPU utilisation can be measured on a per-job or per-host level).

GridLab-1-FGS-0014-0.1 Public 41/97

Final GAT API Specification: Object Based IST-2001-32133

Metric parameters The Metric parameters field in the metric definition contains the formal
definition of the metric parameters. Many metrics can be measured at different places simulta-
neously. For example, CPU utilisation can be measured on several hosts or grid resources. The
metric parameters can be used to distinguish between these different metric instances.

Metric measurement type The Metric Measurement type can be continuous meaning data
is always available or event-like meaning data only becomes available when some external event
happens (e.g. a sensor embedded in an application can send events any time). Continuous
metrics are only available using pull model delivery unless the user specifies a measurement
frequency. (The reason for this is without a specified measurement frequency there is no event
triggering the measurement of a continuous metric.) If the user asks for periodic measurements
by specifying a measurement frequency the system will generate periodic events automatically.
This avoids polling and allows the system to use the measurement frequency information to
optimise measurements.

Metric data type The Metric data type contains the definition of the storage used for rep-
resenting measurement data.

Metric Unit The Metric unit specifies the physical unit in which the metric is measured as
a String. It is only valid for simple numeric types and Lists of these types. In the latter case it
means the unit of all elements of the List.

To use the GATMetric class one must obtain an instance of the GATMetric class. One does so
using GetMetrics operation on a GATMonitorable instance. The notion of GATMetric instance’s
parameters are necessary as the same metric could be measured at different places (e.g. on dif-
ferent hosts) at the same time. A GATMetric instances parameter values are used to differentiate
between these measurements, e.g. instances of a GATMetric describing the available memory
on two host are distinguished by the values of a parameter containing the host-name for example.

Operations

Equals Tests this GATMetric for equality with the passed GATObject.

If the given GATObject is not a GATMetric, then this operation immediately returns False.

For two GATMetric instances to be considered as equal they must have equal GATMetric names,
a String, as determined my the Equals operation on String. In addition, they must have equal
GATMetric parameters and values as determined by the Equals operation on GATTable.

Destructor Destroys this GATMetric object.

GetMetricName Gets the GATMetric name associated with this GATMetric.

Outputs:

String — metricName — Metric name.

GridLab-1-FGS-0014-0.1 Public 42/97

Final GAT API Specification: Object Based IST-2001-32133

GetMetricParameters Gets the GATMetric parameters associated with this GATMetric.

Outputs:

GATTable — metricParameters — Parameters of the GATMetric.

GetMetricParameterByName Gets the GATMetric parameter value associated with the
passed GATMetric parameter name. The null Buffer is returned if there is no GATMetric pa-
rameter value with the passed name.

Inputs:

String — name — Parameter name for which to obtain the associated GATMetric param-
eter value.

Outputs:

Buffer — metricParameter — GATMetric parameter value, a Buffer, associated with the
passed GATMetric parameter name.

Note: Currently, we expect the parameter value returned in metricParameter to be simple
native typed, and hence castable to simple native types (like integers, floats and strings). With
the future extended handling of typed data in Buffers, GAT will support more complex values
for metrics.

GetMeasurementType Metrics can correspond to two types of measurable quantities “con-
tinuous” or “event-like.” A continuous metric corresponds to a measurable quantity whose mea-
surement may be made at any time. As an example, the measurement of the free disk space
may be made at any time. An event-like metric corresponds to a measurable quantity which
can only be measured at certain time and as a result when such a measurement is made the
result is “pushed” to the measurement client, a GATMetricListener. As an example, the the
measurement of the current key struck by a user may only be made when the user strikes a
key. A event-like metric can not be used by the function GetMeasurement on the interface
Monitorable but can be used by the AddMetricListener and RemoveMetricListener functions
on this interface. Likewise a continuous metric can not be used by the AddMetricListener and
RemoveMetricListener functions on the interface Monitorable but can be used by the function
GetMeasurement function on this interface. This function returns one of the public class con-
stants GAT_Unknown, GAT_Continuous, or GAT_EventLike indicating the type of this metric.

Outputs:

Integer — type — Type of this metric

Class Constants

The following integer constant are used to determine the type of an instance of this class:

• GAT_Unknown

• GAT_Continuous

• GAT_EventLike

GridLab-1-FGS-0014-0.1 Public 43/97

Final GAT API Specification: Object Based IST-2001-32133

3.17 class GATMetricEvent
specializes GATObject
realizes GATAction

Description

An instance of this class represents an metric event, an event indicating the measurement of a
metric and the associated resultant data.

A metric event occurs whenever a monitored resource, sends out an event to the monitoring
system. This can encompass almost any type of event from disk space running out to memory
becoming available. The various events are defined by the various sensors. This topic is covered
in more detail in the GATMetric documentation.

Operations

GetSource This operation returns an instance of the source of this GATMetricEvent.

Outputs:

GATObject — source — Source of this GATMetricEvent.

GetValue This operation returns the value corresponding to this GATMetricEvent.
Outputs:

Buffer — value — Contains the value of this GATMetricEvent.

Note: Currently, we expect the parameter value returned in metricParameter to be simple
native typed, and hence castable to simple native types (like integers, floats and strings). With
the future extended handling of typed data in Buffers, GAT will support more complex values
for metrics.

GetMetric This operation returns an instance of the GATMetric to which this GATMet-
ricEvent corresponds.

Outputs:

GATMetric — metric — Corresponds to this GATMetricEvent.

GetEventTime This operation returns the time when the event happened.

Outputs:

GATTime — eventTime — Time when the event happened.

GridLab-1-FGS-0014-0.1 Public 44/97

Final GAT API Specification: Object Based IST-2001-32133

3.18 interface GATMetricListener

Description

This interface allows instances of classes which realize this interface to receive GATMetricEvents
from instances which are sources of GATMetricEvents.

Operations

ProcessMetricEvent An instance of a class realizing this interface receives GATMetricEvents
through calls to this operation when it is registered to receive such events.

Inputs:

GATMetricEvent — event — Event which triggered this operation call.

GridLab-1-FGS-0014-0.1 Public 45/97

Final GAT API Specification: Object Based IST-2001-32133

3.19 The GAT Resource Subsystem

This part of the GAT API specification covers classes which are responsible for interaction with
Resources and jobs on the Grid.

Use Cases for the GAT Resource Subsystem

Simple Job Submission (case A) A client wishes to schedule a job on any suitable resource.
The client first creates a GATSoftwareDescription, and fills in all needed information describing
the job and its software environment (e.g., executable, arguments, environment, required files,
etc.). Then the client creates a GATHardwareResourceDescription, and fills in all needed infor-
mation describing the hardware environment required by the job (e.g., memory, cpu speed, etc).
From these descriptions the client then creates a GATJobDescription. That GATJobDescription
is submitted to a GATResourceBroker instance, which returns a GATJob instance on successful
scheduling.

User creates a GATSoftwareDescription SD.
User creates a GATHardwareResourceDescription HD.
User creates a GATJobDescription using SD and HD.
User creates a GATResourceBroker.
User submits the GATJobDescription to the Resource Broker, and

obtains a GATJob on success.

GATSoftwareDescription SD = new GATSoftwareDescription (...)
GATHardwareResourceDescription HRD = new GATHardwareResourceDescription (...)
GATJobDescription JD = new GATJobDescription (..., SD, HRD)
GATResourceBroker RB = new GATResourceBroker (...)

GATJob J = RB.submit (JD)

delete (SD); delete (HRD);
delete (JD); delete (RB);

Simple Job Submission to a specific Resource (case B) This use case is similar to the
previous one, but the client picks a specific compute resource, and submits the job to that re-
source. To do that, the client again creates a GATSoftwareDescription and a GATHardwareRe-
sourceDescription as above. The GATHardwareResourceDescription is passed to the GATRe-
sourceBroker instance, which returns a list of matching resources. The client picks one of these
resources and creates a GATJobDescription from that resource and the GATSoftwareDescription.
As before, the client submits the GATJobDescription instance to the GATResourceBroker, and
on success gets a GATJob instance returned.

User creates a GATHardwareResourceDescription HRD.
User creates a GATResourceBroker.
User queries the Resource Broker for Resources matching HRD.
User picks one resource from the returned list of resources.
User creates a GATSoftwareDescription SD.
User creates a GATJobDescription using SD and the selected resource.

GridLab-1-FGS-0014-0.1 Public 46/97

Final GAT API Specification: Object Based IST-2001-32133

User submits the GATJobDescription to the Resource Broker, and
obtains a GATJob on success.

GATSoftwareDescription SD = new GATSoftwareDescription (...)
GATHardwareResourceDescription HRD = new GATHardwareResourceDescription (...)
GATResourceBroker RB = new GATResourceBroker (...)
list<GATHardwareResource> HL = RB.findResource (HRD)
GATHardwareResource HR = HL[0]

GATJobDescription JD = new GATJobDescription (..., SD, HR)

GATJob J = RB.submit (JD)

delete (SD); delete (HD);
delete (RB); delete (HL);
delete (HR); delete (JD);

GridLab-1-FGS-0014-0.1 Public 47/97

Final GAT API Specification: Object Based IST-2001-32133

3.20 class GATSoftwareDescription
specializes GATObject
realizes

Description

An instance of this class is a description of a piece of software (component) which is to be sub-
mitted as a job. It currently takes a table describing this piece of software’s attributes to any
underlying job submission system.

The GAT-API defines a minimum set of supported name/value pairs to be included in the GAT-
Table used to construct a GATSoftwareDescription instance, as listed in table 5. This set MUST
be supported by any implementation of the GAT-API. For any GATSoftwareDescription, the
location MUST be specified.

RSL based description keys are accepted as an alternative, as listed in table 4.

Name Type description
location GATLocation software location.
arguments List<String> software arguments.
environment GATTable software environment, names/values are Strings.
stdin GATFile stdin from which the component reads.
stdout GATFile stdout to which the component writes.
stderr GATFile stderr to which the component writes.
pre-staged files List<GATFile> files which SHOULD be staged to the resource be-

fore the component is invoked.
post-staged files List<GATFile> files which SHOULD be staged from the resource

after the component is finished.

Table 3: Software Description: the minimum set of supported name/values.

Operations

Constructor The class constructor takes a GATTable describing the software.

Inputs:

GATTable — attributes — Attributes describing this software component.

Destructor Destroys this instance.

Equals Tests this GATSoftwareDescription for equality with the passed GATObject. GAT-
SoftwareDescription are equal if they have equivalent description tables.

GridLab-1-FGS-0014-0.1 Public 48/97

Final GAT API Specification: Object Based IST-2001-32133

Name Type description
rsl.directory String working directory.
rsl.executable String executable location.
rsl.arguments list<String> arguments to the program.
rsl.stdin GATLocation stdin from which the component reads.
rsl.stdout GATLocation stdout to which the component writes.
rsl.stderr GATLocation stderr to which the component writes.
rsl.count Integer number of executables to run.
rsl.hostCount Integer number of hosts to distribute on.
rsl.environment GATTable name/Value pairs in Strings.
rsl.maxTime GATTime maximal time.
rsl.maxWallTime GATTime maximal WALL time.
rsl.maxCPUTime GATTimt maximal CPU time.
rsl.jobType String single|multiple|mpi|condor|...
rsl.queue String target queue name.
rsl.project String project account to use.
rsl.dryRun Boolean if set, dont submit but return success.
rsl.minMemory Integer minimal required memory in MB.
rsl.maxMemory Integer maximal required memory in MB.
rsl.saveState Boolean keep job data persistent for restart.
rsl.restart=ID String restart job with given ID.

Table 4: Software Description: RSL type keys are also supported.

3.21 interface GATResourceDescription

Description

The GATResourceDescription interface forms the base for the GATSoftwareResourceDescrip-
tions and GATHardwareResourceDescriptions classes; these are used to specify and find re-
sources which may then be used, for example, to submit a GATJob to. It has an associated
GATTable whose key/value pairs describe the resource.

A GATJob may have many requirements, both on software and hardware, which need to be
satisfied to run, e.g. specific versions of the operating system, minimum amount of memory,
presence of specific compilers or libraries on a system, etc. Each one of these requirements may
itself possibly in turn depend on some other software or hardware requirement. Sometimes there
may be possible alternatives, for example the GATJob may be able to use any one of a set of
possible system libraries which might be installed. Hence, a complete resource description re-
quires a list of possible specifications, and, ideally, some way of specifying allowable alternatives.
In order to accommodate this, a GATResourceDescription has, as well as a table describing
software of hardware resource requirements, a list of child GATResourceDescriptions, at least
one of which must be satisfied in addition to the requirements of this GATResourceDescription.
I.e. a GATResourceDescription is a tree, and it is matched if a path exists from the root of the
tree to any leaf where the requirements of every node on that path are met.

Specifying Two Hardware Requirements which must both be met The user requires
that the job be run on hardware which matches two different GATHardwareResourceDescrip-

GridLab-1-FGS-0014-0.1 Public 49/97

Final GAT API Specification: Object Based IST-2001-32133

1
GATResourceDescription

11

0..1

GATTable

has list of

*

Figure 5: Classes realizing the GATResourceDescription interface contain descriptions of (soft-
ware or hardware) resources (a GATTable), and optionally descriptions of other resources that
resource depends on.

tions.

User creates a GATHardwareResourceDescription HRD1.

User creates a GATHardwareResourceDescription HRD2.

User invokes HRD1.AddResourceDescription(HRD2)

Note that this MUST be equivalent to

User creates a GATHardwareResourceDescription HRD1.

User creates a GATHardwareResourceDescription HRD2.

User invokes HRD2.AddResourceDescription(HRD1)

i.e. the order in which requirements appear on any single path through the tree MUST be
irrelevant.

Specifying one Hardware Requirement and two alternative software requirements
The user requires that the job be run on hardware matching a certain GATHardwareRe-
sourceDescription, but this hardware must have at least one of LAM or MPICH as MPI imple-
mentations.

User creates a GATHardwareResourceDescription HRD.

User creates a GATSofwareResourceDescription SRD1, specifying LAM.

User invokes HRD.AddResourceDescription(SRD1)

User creates a GATSofwareResourceDescription SRD2, specifying MPICH.

User invokes HRD.AddResourceDescription(SRD2)

GridLab-1-FGS-0014-0.1 Public 50/97

Final GAT API Specification: Object Based IST-2001-32133

Operations

Constructor The class constructor takes an optional GATTable describing the resource.

Inputs:

GATTable — description — Description for the resource.
(OPTIONAL)

Destructor Destroys this instance.

Equals Tests this GATResourceDescription for equality with the passed GATObject. GATRe-
sourceDescriptions are equal if they have equivalent entries in the description table, and equiv-
alent lists of dependent GATResourceDescriptions..

SetDescription This operation sets the resource description for this instance.

Inputs:

GATTable — description — Description for this resource’s description instance.

GetDescription This operation returns the resource description for this instance.

Outputs:

GATTable — description — Description for the resource.

AddResourceAttribute Adds the name/value pair to the GATTable of name/value pairs
which describe the resource.

Inputs:

String — name — Name to add to the name/value pairs describing the resource.

GATObject — value — Value to add to the name/value pairs describing the resource.

RemoveResourceAttribute Removes the name/value pair with the passed name from the
GATTable of name/value pairs which describe the resource.

Inputs:

String — name — Name to of the name/value pair to remove from the name/value pairs
which describe the resource.

GridLab-1-FGS-0014-0.1 Public 51/97

Final GAT API Specification: Object Based IST-2001-32133

AddResourceDescription This operation adds an instance realizing the GATResourceDescrip-
tion interface (GATSoftwareResourceDescription or GATHardwareResourceDescription) to the
list of dependent GATResourceDescriptions.

Inputs:

GATResourceDescription — description — Class instance realizing the GATResourceDescrip-
tion interface to be added to the list.

RemoveResourceDescription This operation removes an instance realizing the GATResourceDescrip-
tion interface (GATSoftwareResourceDescription or GATHardwareResourceDescription) from
the list of dependent GATResourceDescriptions. An error is issued if the specified instance is
not a member of the list of GATResourceDescriptions.

Inputs:

GATResourceDescription — description — Class instance realizing the GATResourceDescrip-
tion interface to be removed from the list.

GridLab-1-FGS-0014-0.1 Public 52/97

Final GAT API Specification: Object Based IST-2001-32133

3.22 class GATSoftwareResourceDescription
specializes GATObject
realizes GATResourceDescription

Description

An instance of this class is a description of requisite software (a component) for some complete
resource specification, for example pre-requisite software for a job to run, or the presence of a
monitoring system to monitor a hardware resource or a running job. It accepts only specific
values for keys on its GATTable containing the software resource description. These keys are
specified in table 5.

Use Cases

To clarify the rather vague concept of what a GATSoftwareResourceDescription describes, the
following list gives some examples:

• a system library,

• a compiler,

• a hosting environment,

• a helper application,

• a component,

• a plugin,

• a service

• an operating system,

E.g., a Fluent job requires the presence of Fluent, a java application requires a Java run-time
environment.

In general any resource which corresponds to a component is described by a GATSoftwareRe-
sourceDescription. However, a hardware node is not described by a GATSoftwareResourceDescrip-
tion.

The GAT-API defines a minimum set of supported name/value pairs to be included in the
GATTable used to construct a GATSoftwareResourceDescription instance, as listed in table 5.
This set MUST be supported by any implementation of the GAT-API.

Operations

Apart from the operations specified by the GATResourceDescription interface, no other opera-
tions are specified by this class.

GridLab-1-FGS-0014-0.1 Public 53/97

Final GAT API Specification: Object Based IST-2001-32133

Name Type Description
os.name String The os name as returned from uname -s.
os.type String The os type as returned from uname -p.
os.version String The os version as returned from uname -v.
os.release String The os release as returned from uname -r.
os.name String The os name as returned from uname -s.

Table 5: Software Resource Description: the minimum set of supported name/values.

3.23 class GATHardwareResourceDescription
specializes GATObject
realizes GATResourceDescription

Description

An instance of this class is a description of a hardware resource (node).

Use Cases

To clarify the rather vague concept of what a GATHardwareResourceDescription describes, the
following list gives some examples:

• compute resources,

• network connections,

• a data storage element (e.g.hard drive),

• a graphics hardware resource,

• a supercomputer,

• a laptop,

• or similar pieces of hardware.

In general any resource which corresponds to a node is described by a GATHardwareResourceDescrip-
tion. However, software components are not described by a GATHardwareResourceDescription.

The GAT-API defines a minimum set of supported name/value pairs to be included in the
GATTable used to construct a GATHardwareResourceDescription instance, as listed in table 6.
This set MUST be supported by any implementation of the GAT-API.

Operations

Apart from the operations specified by the GATResourceDescription interface, no other opera-
tions are specified by this class.

GridLab-1-FGS-0014-0.1 Public 54/97

Final GAT API Specification: Object Based IST-2001-32133

Name Type Description
memory.size Float The minimum memory in GB.
memory.accesstime Float The minimum memory access time in ns.
memory.str Float The minimum sustained transfer rate in GB/s.
machine.type String The machine type as returned from uname -m.
machine.node String The machine node name as returned from uname -n.
cpu.type String The generic cpu type as returned from uname -p.
cpu.speed Float The minimum cpu speed in GHz.
disk.size Float The minimum size of the hard drive in GB.
disk.accesstime Float The minimum disk access time in ms.
disk.str Float The minimum sustained transfer rate in MB/s.

Table 6: Hardware Resource Description: The minimum set of supported name/values.

3.24 interface GATResource

Description

GATResource is a base interface which is realized by any class which wishes to indicate it rep-
resents a node or component; currently both a GATHardwareResource and a GATSoftwareRe-
source realize this interface. A GATReservation may be associated with this GATResource, and
can be obtained by the operation GetReservation.

Operations

Destructor Destroys this GATResource instance, and cancels all pending reservations associ-
ated with it.

GetResourceDescription Gets the GATResourceDescription which describes this GATRe-
source instance.

Outputs:

GATResourceDescription — rd — Describes this GATResource instance.

GetReservation Gets the GATReservation associated with this GATResource instance, if any
— otherwise an error is issued.

Outputs:

GATReservation — reservation — An GATReservation instance associated with this GATRe-
source.

GridLab-1-FGS-0014-0.1 Public 55/97

Final GAT API Specification: Object Based IST-2001-32133

3.25 class GATSoftwareResource
specializes GATObject
realizes GATMonitorable, GATResource, GATAdvertiseable

Description

An instance of this class presents an abstract, system-independent, view of a specific software
component described by a GATSoftwareResourceDescription. It allows one to monitor the com-
ponent, and to examine the various properties of the component to which this instance corre-
sponds.

Operations

Constructor Constructs a GATSoftwareResource instance corresponding to the passed GAT-
Context instances.

Inputs:

GATContext — context — Used to broker resources.

Destructor Destroys this GATSoftwareResource instance.

GridLab-1-FGS-0014-0.1 Public 56/97

Final GAT API Specification: Object Based IST-2001-32133

3.26 class GATHardwareResource
specializes GATObject
realizes GATMonitorable, GATResource, GATAdvertiseable

Description

An instance of this class presents an abstract, system-independent view of a hardware node de-
scribed by a GATHardwareResourceDescription . It allows one to monitor the node, and to
examine the various properties of the node to which this instance corresponds.

Operations

Constructor Constructs a GATHardwareResource instance corresponding to the passed GAT-
Context instances.

Inputs:

GATContext — context — Used to broker resources.

Destructor Destroys this GATHardwareResource instance

GridLab-1-FGS-0014-0.1 Public 57/97

Final GAT API Specification: Object Based IST-2001-32133

3.27 class GATJobDescription
specializes GATObject

Description

An instance of this class describes a job to be run. It consists of a description of the “executable”
(a GATSoftwareDescription), and of a description of the resource requirements of the job. The
latter can be given as either a GATResourceDescription, or as a specific GATResource; only one
of these may be specified.

GATJobDescription

GATSoftwareDescription GATResourceDescription GATResource

1 1 0..1

has list of

1 1
1

{or}

Figure 6: The class GATJobDescription contains information about the “executable” (GAT-
SoftwareDescription), and of the resources the job be executed on (GATResourceDescription or
GATResource).

Operations

Constructor The class GATJobDescription takes a GATContext as argument, and optionally
accepts either one of the following set of arguments:

(GATSoftwareDescription, GATResourceDescription)

(GATSoftwareDescription, GATResource)

Inputs:

GATContext — context — GATContext used to broker resources.

GATSoftwareDescription — sd — Description of the job executable.

GATResourceDescription — rd — Description of the resources the job can be run on.

Constructor The second constructor, which accepts a GATResource instead of a GATRe-
sourceDescription.
Inputs:

GATContext — context — GATContext used to broker resources.

GATSoftwareDescription — sd — Description of the job executable.

GATResource — res — Resource the job SHOULD be run on.

Destructor Destroys this GATJobDescription instance.

GridLab-1-FGS-0014-0.1 Public 58/97

Final GAT API Specification: Object Based IST-2001-32133

3.28 class GATJob
specializes GATObject
realizes GATMonitorable, GATAdvertiseable

Description

An instance of this class represents a distinct unit which is submitted to a resource broker.

A GATJob instance gets created by a GATResourceBroker instance, on successful submission of
a GATJobDescription.

Upon creation, the GATJob will not, in general, have been submitted to a specific resource,
or queueing system. As time progresses the GATJob’s will be submitted to a jobs scheduler
somewhere, and eventually start to run. Thus a GATJob has various possible states:

• GAT Initial

• GAT Scheduled

• GAT SubmissionError

• GAT Running

• GAT Stopped

The state may change automatically, or by the some operation performed on the GATJob. The
states are defined as follows

GAT Initial The GATJob instance has been submitted to an underlying resource management
service but has not yet been submitted to a specific resource.

GAT Scheduled The GATJob instance has been submitted by an underlying resource man-
agement service to a resource, and the GATJob is scheduled to run.

GAT SubmissionError An error occurred when trying to submit this job, either to an un-
derlying resource management service, or when such a service tried to submit to a queuing
system or otherwise dispatch the job. A description of the error SHOULD be available from a
GATStatus instance available by invoking the GetStatus operation.

GAT Running The process represented by the GATJob instance is being executed.

(GAT Stopped
The GATJob instance was running but is not currently running. That state can be reached by
a successful call to the operation Stop, or due to the GATJob completing, or crashing.

Operations

Constructor The class GATJob does not have a publicly available constructor— instances get
created by a GATResourceBroker instance. The initial GATContext used by the GATJob is that
of the creating GATResourceBroker instance. The only other way to create a GATJob instance
is by de-serialisation the class implements (it realizes the GATAdvertisable interface).

GridLab-1-FGS-0014-0.1 Public 59/97

Final GAT API Specification: Object Based IST-2001-32133

GAT_Initial

GAT_Scheduled

GAT_Checkpointing

GAT_SubmissionError

Creat ()

Unschedule ()

GAT_Running
Stop ()

on Submission

Checkpoint ()

Destroy ()

on Startup

on Finish

on Checkpoint Done

on Error

GAT_Stopped

Figure 7: A state diagram for an instance of the class GATJob. The State can be actively changed
by calling the operations unschedule and stop. The bold arrows are state changes induced by
the resource management systems, and are out of direct user control.

Destructor Destroys this GATJob object.

UnSchedule Unschedule this GATJob. Upon successful completion this method guarantees
that this GATJob is not scheduled to a job queue, its state is GAT Finished. This operation
can only be called on a GATJob in the GAT Scheduled state, otherwise an error will is issued.

Checkpoint Trigger a checkpoint for the GATJob. The call can only succeed on processes
which support application level checkpointing, or on resources which provide system level check-
pointing. The call returns immediately after delivering the checkpointing request to the job or
to the resource the job is running on; the actual checkpoint may happen some time after this
return.
During checkpointing, the process state is saved to long term storage. That state information
SHOULD be sufficient to restart the job, even on a different resource (migration) or with multi-
ple copies (cloning). This is useful for processes which involve significant data manipulation and
can not, for any number of reasons, finish all of this data manipulation in a single run; also, it is
useful for processes which involve significant data manipulation and are, for any number of rea-
sons, unstable. In both of these cases checkpointing allows the process to manipulate some data
now, then, at a later date, continue running. This operation can only be called on a GATJob in
the GAT Running state, otherwise an error will be issued.

Clone The Clone operation creates a copy of the GATJob. The resulting GATJob has the
same GATSoftwareDescription in its GATJobDescription, but the GATResourceDescriptions or
GATResources of its GATJobDescription may be altered.
This operation upon success completes the following steps:

1. Constructs a new GATJobDescription instance with the GATSoftwareResourceDescription
used to construct this GATJob instance.

GridLab-1-FGS-0014-0.1 Public 60/97

Final GAT API Specification: Object Based IST-2001-32133

2. Complete the new GATJobDescription instance with the optional GATHardwareResource
passed to the Clone operation.

3. If no GATHardwareResource is given, use the GATHardwareResourceDescription or GATH-
ardwareResource used to construct the current job.

4. Configures the new GATJobDescription instance so that when it begins running it will have
the same state as the state saved in the last call to checkpoint on this GATJob instance.

5. Returns this new GATJob instance to the caller.

This operation can only be called on a GATJob instance on which the operation Checkpoint has
been successfully called at least once, otherwise an error will be issued.
Inputs:

GATHardwareResource — hr — Hardware resource the clone SHALL run on.
(Optional)

Outputs:

GATJob — clone — Cloned GATJob instance.

Migrate The Migrate operation provides similar functionality to the Clone operation. The
only difference is that the calling GATJob instance is discontinued after the new job is spawned
off successfully — its state is GAT Stopped then.
Inputs:

GATHardwareResource — hr — Hardware resource the clone SHALL run on.
(Optional)

Outputs:

GATJob — newJob — Migrated GATJob instance.

Stop Stops the GATJob. Upon a successful call to this operation, the processes associated
with the GATJob are forcibly terminated. This operation can only be called on a GATJob in
the GAT Running state.

GetJobDescription This operation returns the GATJobDescription instance used to create
that GATJob instance.
Outputs:

GATJobDescription — jobDescription — GATJobDescription for this GATJob instance.

GetState This operation returns the state of the represented process. This is one of the asso-
ciated public class constants GAT Initial, GAT Scheduled, GAT Running, or GAT Stopped.

Outputs:

Integer — state — State of the represented process.

GridLab-1-FGS-0014-0.1 Public 61/97

Final GAT API Specification: Object Based IST-2001-32133

GetInfo This operation returns an instance of the class GATTable.

Outputs:

GATTable — info — Contains information about the associated GATJob.

This GATTable contains a set of key/value pairs the key, a String, being the name of the
information and the value being the value of the associated named information. The minimum
set of keys which the returned GATTable contains is as follows:

• hostname

• scheduletime

• starttime

• stoptime

• checkpointable

hostname The key hostname corresponds to a String value which is the name of the host on
which the represented process is running, if GATJob is in the GAT Running state, or will be
running on, if GATJob is in the GAT Scheduled state. If the associated GATJob is not in the
GAT Running or GAT Scheduled state, then the value is empty.

scheduletime The key scheduletime corresponds to an Integer value which is the number of
milliseconds after January 1, 1970, 00:00:00 GMT when the represented process was scheduled.
This value is empty for a GATJob in the GAT Initial state.

starttime The key starttime corresponds to an Integer value which is the number of millisec-
onds after January 1, 1970, 00:00:00 GMT when the represented process was started. This value
is empty for a GATJob in the GAT Scheduled or GAT Initial states.

stoptime The key stoptime corresponds to an Integer value which is the number of millisec-
onds after January 1, 1970, 00:00:00 GMT when the represented process stopped, for a GATJob
in the GAT Stopped state, otherwise it is empty.

checkpointable The key checkpointable corresponds to a boolean value. This value indicates
if the represented process is able to be checkpointed.

Other key/value pairs will be in future added to the list of key/value pairs returned in this
GATTable as the need develops.

GetJobID This operation returns the job id, a globally unique identifier for the represented
process corresponding to this instance. This operation SHOULD be called on a GATJob instance
only when the instance is in a GAT Running or GAT Scheduled state, otherwise an error will
be issued.

Outputs:

String — jobID — Job ID.

GridLab-1-FGS-0014-0.1 Public 62/97

Final GAT API Specification: Object Based IST-2001-32133

GetStatus When the job is in the GAT SubmissionError state, this operation SHOULD pro-
vide a GATStatus instance which gives further information as to the cause of the error.
Outputs:

GATStatus — status — An object providing further information about the submission
error.

Class Constants

The following integer constant are used to determine the state of an instance of this class:

• GAT_Initial

• GAT_Scheduled

• GAT_SubmissionError

• GAT_Running

• GAT_Stopped

GridLab-1-FGS-0014-0.1 Public 63/97

Final GAT API Specification: Object Based IST-2001-32133

3.29 class GATResourceBroker
specializes GATObject

Description

An instance of this class is used to broker Resources. A resource can either be a node or a com-
ponent.

Resources are found by constructing a GATResourceDescription instance specifying the desired
properties of the resource or resources, e.g. amount of memory, amount of disk-space, installed
software, etc.

Resources may either be found and reserved in one step by calling the ReserveResource operation
with a GATResourceDescription, and, optionally, information describing the desired starting
time and duration of the reservation, or resources may first be found by invoking the Find-
Resources operation, which returns a list of GATResources satisfying the GATResourcedescrip-
tion, and then the ReserveResource operation may be invoked with a specific resource (and
optional time information); in either case a GATReservation instance is obtained.

A GATResource instance may then be extracted from the GATReservation, and this GATRe-
source used to construct a GATJobDescription.

GATResources found by the FindResources operation may also be monitored.

Use cases

In this use case the client wishes to obtain a reservation for a hardware resource for a particular
time period.

User creates a GATTimePeriod TP.
User creates a GATHardwareResourceDescription HRD.
User creates a GATResourceBroker.
User submits the GATHardwareResourceDescription and the

GATTimePeriod to the Resource Broker, and
obtains a GATReservation on success.

GATTimePeriod TP = new GATTimePeriod (...)
GATHardwareResourceDescription HRD = new GATHardwareResourceDescription (...)
GATResourceBroker RB = new GATResourceBroker (...)

GATReservation R = RB.ReserveResource (HRD, TP)

delete (TP); delete (HRD);
delete (RB); delete (R);

GridLab-1-FGS-0014-0.1 Public 64/97

Final GAT API Specification: Object Based IST-2001-32133

Operations

Constructor This operation constructs a GATResourceBroker instance using the passed GAT-
Context and GATPreferences.

Inputs:

GATContext — context — Used to broker resources.

GATPreferences — preferences — User preferences.
(OPTIONAL)

GATString — vo — Used to indicate the virtual organization
to which this resource broker is to be bound. resources.

Destructor Destroys this GATResourceBroker object.

ReserveResource This operation attempts to reserve the specified resource at the specified
time, for the specified time period. Upon success this operation returns a GATReservation,
which has an associated GATResource attribute representing the successfully reserved resource.
Upon failing to reserve the specified resource this operation issues an error.

Inputs:

GATResourceDescription — rd — Description of the resource to reserve.

GATTime — time — Time for reservation to start.
(OPTIONAL)

GATTimePeriod — duration — Time period for which to reserve the resource.
(OPTIONAL)

Outputs:

GATReservation — reservation — Reservation upon success.

ReserveResource This operation attempts to reserve the specified resource at the specified
time, for the specified time period. Upon success this operation returns a GATReservation,
which has an associated GATResource attribute representing the successfully reserved resource.
Upon failing to reserve the specified resource this operation issues an error.

Inputs:

GATResource — res — GATResource instance corresponding to the resource to reserve.

GATTime — time — Time for reservation to start.
(OPTIONAL)

GATTimePeriod — duration — Time period for which to reserve the resource.
(OPTIONAL)

Outputs:

GATReservation — reservation — Reservation upon success.

GridLab-1-FGS-0014-0.1 Public 65/97

Final GAT API Specification: Object Based IST-2001-32133

FindResources This operation attempts to find one or more matching resource (s). Upon suc-
cess this operation returns a List of GATResource instances. Upon failing to find any specified
resource an empty list is returned.

Inputs:

GATResourceDescription — rd — Description of the resource (s) to find.

Outputs:

List of GATResources — resources — Resources found.

SubmitJob This operation takes a GATJobDescription, and submits the specified job to some
underlying resource management or allocation system. On success, a GATJob instance is re-
turned, which represents the job. Upon failing to submit the job, an error is issued.

Inputs:

GATJobDescription — jobDescription — Description of the job to schedule.

Outputs:

GATJob — job — Representation of the job.

GridLab-1-FGS-0014-0.1 Public 66/97

Final GAT API Specification: Object Based IST-2001-32133

3.30 class GATReservation
specializes GATObject

Description

An instance of this class is a reservation for a GATResource.

Operations

Cancel This operation upon successful completion cancels the reservation corresponding to
this GATReservation instance.

GetResource This operation returns the GATResource corresponding to this GATReservation
instance. That instance can in turn call the operation GetReservation to obtain this GATReser-
vation instance.

Outputs:

GATResource — resource — Resource upon success, undefined otherwise.

GridLab-1-FGS-0014-0.1 Public 67/97

Final GAT API Specification: Object Based IST-2001-32133

4 GAT Application Utility API

This section defines the publicly accessible operations and class constants associated with each
descriptor. Note that private data is an implementation and language-specific detail and is thus
not part of the API.

GridLab-1-FGS-0014-0.1 Public 68/97

Final GAT API Specification: Object Based IST-2001-32133

4.1 class GATObject

Description

Ancestor of all classes in the GAT API.

Operations

Constructor This no arguments constructor creates an instance of an GATObject.

Destructor Destroys this GATObject.

Equals The Equals operation implements an equivalence relation indicating whether some
other object is ”equal to” this one. It is defined as a relation with the following properties:

• It is reflexive, for any reference value x, x.equals(x) should return True.

• It is symmetric, for any reference values x and y, x.equals(y) should return True if and
only if y.equals(x) returns True.

• It is transitive, for any reference values x, y, and z, if x.equals(y) returns True and
y.equals(z) returns True, then x.equals(z) should return True.

In addition, for any non-null reference value x, x.equals(null) should return False.

The Equals operation for this class returns True if and only two reference values x and y refer
to the same instance in memory, in other words if x == y is True.

GridLab-1-FGS-0014-0.1 Public 69/97

Final GAT API Specification: Object Based IST-2001-32133

4.2 class GATContext
specializes GATObject

Description

An instance of this class is the primary GAT state object.

Operations

Constructor This constructor creates an instance of a GATContext.

Destructor Destroys this GATContext object.

AddPreferences The given GATPreferences are used as default preferences if for GATOb-
jects created with this GATContext.
Inputs:

GATPreferences — preferences — Default GATPreferences for GATObjects created with
this GATContext.

RemovePreferences Remove the GATPreferences used as default preferences if for GATO-
bjects created with this GATContext.

GetPreferences Return the GATPreferences that are used as default preferences if for GATO-
bjects created with this GATContext.
Outputs:

GATPreferences — preferences — Default GATPreferences for GATObjects created with
this GATContext.

Clone Clone is used to clone a specified context, copying all state and security information.
The new GATContext is completely independent from the original one, which may be destroyed
with no effect on the new one.

Outputs:

GATContext — context — New GATContext.

ServiceActions The ServiceActions call is used to allow the GAT Engine to service asyn-
chronous actions, such as GATRequests and GATMetricEvents. In a single-threaded application
it is likely that a timeout would be supplied, in a multi-threaded application one thread may be
used for the GAT by using this call and no timeout.

The use of the ServiceActions operation MAY be language specific. For instance, some languages
are naturally threaded, and this functionality may be provided by native means. As the timeout
SHOULD be honored by all adaptors, the API user SHOULD treat that as a request that the
implementation will attempt to honour.
Inputs:

GATTimePeriod — timeout — this may be a 0 timeout to indicate no timeout at all, or
a specific time length.

GridLab-1-FGS-0014-0.1 Public 70/97

Final GAT API Specification: Object Based IST-2001-32133

AddSecurityContext Adds the passed GATSecurityContext.

Inputs:

GATSecurityContext — securityContext — Instance to add.

RemoveSecurityContext Removes the passed GATSecurityContext.

Inputs:

GATSecurityContext — securityContext — Instance to remove.

GetSecurityContexts Gets the List of GATSecurityContexts associated with this GATCon-
text.

Outputs:

List of GATSecurityContexts — securityContexts — GATSecurityContexts associated
with this GATContext.

GetSecurityContextsByType Gets a List of GATSecurityContexts of the specified type
associated with this GATContext.

Inputs:

Integer — type — GATSecurityContext type.

Outputs:

List of GATSecurityContexts — securityContexts — GATSecurityContexts of the specified
type associated with this GATContext.

GetStatus Gets the GATStatus instance of the last operation associated with this GATCon-
text. Note that in languages supporting exceptions, this MAY also have been thrown as an
exception by that operation.

Outputs:

GATStatus — status — GATStatus of last GAT operation associated with this context.

GridLab-1-FGS-0014-0.1 Public 71/97

Final GAT API Specification: Object Based IST-2001-32133

4.3 class GATSecurityContext
specializes GATObject

Description

A container for security information. Each context has a type associated with it. The type
indicates if the GATSecurityContext instance corresponds to a “password” GATSecurityContext
or a “certificate” GATSecurityContext.

Currently we provide additional auxiliary operations to create a context based upon password
information or upon credentials stored in a file. GATContexts based upon these mechanisms
can be used by adaptors to create further contexts containing opaque data objects, e.g. GSSAPI
credentials.

Operations

Constructor Creates a new security context of a specific type. The type indicates the means
by which this instance allows “secure” communications to be established. The allowed values for
this type are the various public class variables of this class established for this purpose.

Inputs:

Integer — type — Integer indication of the type of this instance.

Equals Tests this GATSecurityContext for equality with the passed GATObject.

If the given GATObject is not a GATSecurityContext, then this operation immediately returns
False.

For two GATSecurityContexts to be considered equal requires that they must be acquired over
the same mechanisms and must refer to the same name.

Destructor Destroys a security context.

SetPasswordAuthenticate Makes this a “Password” type security context and stores the
username and password in the context.

Inputs:

String — name — Username associated with password.

String — password — Password.

GetPasswordAuthenticate If this is a “Password” type security context get the username
and password from the context.

Outputs:

String — name — Username associated with password.

String — password — Password.

GridLab-1-FGS-0014-0.1 Public 72/97

Final GAT API Specification: Object Based IST-2001-32133

SetCertificateAuthenticate Makes this a “Certificate” type security context and stores the
information about the location of keyfile and certificate file in the context.

Inputs:

String — keyfile — Keyfile, containing valid absolute or relative local path to keyfile.
A relative path will be converted to an absolute path based upon the current working
directory.

String — certificate — Certificate, containing valid absolute or local path to certificate
file. A relative path will be converted to an absolute path based upon the current working
directory.

String — passphrase — Passphrase (OPTIONAL)

GetCertificateAuthenticate If this is a “Certificate” type security context get the informa-
tion about the location of keyfile and certificate file stored in the context.

Outputs:

String — keyfile — Keyfile, containing valid absolute or relative local path to keyfile.
A relative path will be converted to an absolute path based upon the current working
directory.

String — certificate — Certificate, containing valid absolute or local path to certificate
file. A relative path will be converted to an absolute path based upon the current working
directory.

String — passphrase — Passphrase

SetRemoteAuthenticate Makes this a “Remote” type security context and stores the infor-
mation about the location of remote credential server in the context.

Inputs:

GATLocation — location — Location (URL) for remote credential server.

String — name — Username associated with the credential.

String — passphrase — Passphrase associated with the credential.

GetRemoteAuthenticate If this is a “Remote” type security context get the information
about the location of remote credential server stored in the context.

Inputs:

GATLocation — location — Location (URL) for remote credential server.

String — name — Username associated with credential.

String — passphrase — Passphrase associates with credential.

GridLab-1-FGS-0014-0.1 Public 73/97

Final GAT API Specification: Object Based IST-2001-32133

GetType Gets the type associated with this instance.

Outputs:

Integer – Type associated with this instance.

Clone Clone is used to clone a specified GATSecurityContext instance, copying all state and
security information. The new GATSecurityContext is completely independent from the original
one, which may be destroyed with no effect on the new one. This method is used when cloning
a GATContext.

Outputs:

GATSecurityContext — secContext — New GATSecurityContext.

Class Constants

GAT Password — Integer constant used to specify the type of an instance of this

GAT Certificate — Integer constant used to specify the type of an instance of this

GAT Remote — Integer constant used to specify the type of an instance of this class.

GridLab-1-FGS-0014-0.1 Public 74/97

Final GAT API Specification: Object Based IST-2001-32133

4.4 template class GAT<T>CredentialService

Description

Classes binding to specific values of the parameter <T> provide methods to return specific
security objects, given an instance of a GATSecurityContext. For example a GATGSICreden-
tialService provides mechanisms to get GSI credentials, a GATSSLCredentialService provides
access to an SSL security object.

Operations

Constructor Constructs a GAT<T>CredentialService instance.
Inputs:

GATContext — context — GATContext

GetFullCredentialList Gets a List of credentials of type <T> from the security contexts
associated with the GATContext.
Outputs:

List of <T> objects — credential list — List of credential objects

GetCredentialList Gets a List of credentials of type <T> from a given security context
associated with the GATContext. It is an error if passed GATSecurityContext instance is not
associated with the GATContext used in the constructor of this GAT<T>CredentialService
instance.
Inputs:

SecurityContext — context — A security context to get the <T> credential objects from.

Outputs:

List of <T> objects — credential list — List of credential objects

GridLab-1-FGS-0014-0.1 Public 75/97

Final GAT API Specification: Object Based IST-2001-32133

4.5 class GATSelf
specializes GATObject

Description

This class corresponds to the current GAT job. There is only ever one instance of this class, which
is obtained by the GetInstance method. This object can be used to change various properties of
this job, such as whether it is checkpointable or not, and what metrics or events it can report.
It can also provide the GATJob instance associated with this job, which may then be advertised.

Operations

GetInstance This class level operation returns the GATSelf object. While the GATSelf is
not associated with any particular GATContext, this operation requires one to allow implemen-
tations to maintain thread-safety.
Inputs:

GATContext — context — GATContext for thread safety.

Outputs:

GATSelf — self — The GATSelf instance

SetExecutionEnvironment This class level operation announces the execution environment
to the GAT Engine. The Engine can hence react on the given command line arguments and
environemnt. The need for that method arises, amongst others, for the correct instanciation of
the GATJob object representing this program instance (see GetJob method).
Inputs:

Integer — argc — number of command line arguments

List of Strings — argv — command line arguments

String — path — complete path to executable

List of Strings — environment — ”KEY=VALUE” formated environment strings

AddRequestListener Add a listener for specific GATRequests. If this is an information
request listener, an application monitoring this application may see this as a new entry in
the list of available metrics. If this is a command request, it must be “checkpoint”, and this
application will now appear as checkpointable.
Inputs:

GATRequestListener — listener — an objectrealizing the GATRequestListener interface.

Integer — type — corresponding to the type of GATRequest served by this listener —
command or information.

GATTable — Parameters — contains further information describing this request type. In
the case of an information request this must provide the “Metric Parameters”, “Metric
measurement type”, “Metric data type” and “Metric unit” as detailed in the GATMetric
class.

String — name — Name for the GATRequest.

GridLab-1-FGS-0014-0.1 Public 76/97

Final GAT API Specification: Object Based IST-2001-32133

RemoveRequestListener Remove the request listener. If it was an information request
listener, it will no longer be available to monitoring clients. If it was a checkpoint command
listener the application will no longer be marked as checkpointable.
Inputs:

String — name — Name for the GATRequestListener to be removed.

GetJob Gets a GATJob instance which is associated with this job. This can then be advertised
to allow other jobs to manipulate this one.
Inputs:

GATContext — context — GATContext to be used for that GATJob.

Outputs:

GATJob — job — a GATJob associated with this job.

Class Constants

GAT CommandRequest — Integer constant used to specify that a GATRequestListener is
for command requests.

GAT InformationRequest — Integer constant used to specify that a GATRequestListener
is for information requests.

GridLab-1-FGS-0014-0.1 Public 77/97

Final GAT API Specification: Object Based IST-2001-32133

4.6 class GATLocation
specializes GATObject

Description

An instance of this class represents the location of an abstract or physical resource. The location
of an abstract or physical resource is represented by a URI as defined by the standards

• RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax

• RFC 2732: Format for Literal IPv6 Addresses in URLs.

One should refer to these standards to determine the allowed forms for URIs. This class provides
a means to create a GATLocation instance from a “URI in String form,” operations for accessing
the various components of the contained URI, and various other utility operations.

Operations

Constructor Constructs a GATLocation instance by parsing the given String as a URI.
This constructor parses the given String exactly as specified by the grammar in RFC 2396, Ap-
pendix A, except IPv6 addresses are permitted for the host component. An IPv6 address must
be enclosed in square brackets (‘[’ and ‘]’) as specified by RFC 2732. The IPv6 address itself
must parse according to RFC 2373. IPv6 addresses are further constrained to describe no more
than sixteen bytes of address information, a constraint implicit in RFC 2373 but not expressible
in the grammar.

Inputs:

String — uri — URI for the Location.

Equals Tests this GATLocation for equality with the passed GATObject.

If the given GATObject is not a GATLocation, then this operation immediately returns False.

For two GATLocations to be considered equal requires that either both are opaque or both are
hierarchical. Their schemes must either both be undefined or else be equal without regard to
case, and similarly for their fragments.

For two opaque GATLocations to be considered equal, their scheme-specific parts must be equal.

For two hierarchical GATLocations to be considered equal, their paths must be equal and their
queries must either both be undefined or else be equal. Their authorities must either both be
undefined, or both be registry-based, or both be server-based. If their authorities are defined
and are registry-based, then they must be equal. If their authorities are defined and are server-
based, then their hosts must be equal without regard to case, their port numbers must be equal,
and their user-information components must be equal.

When testing the user-information, path, query, fragment, authority, or scheme-specific parts of
two GATLocations for equality, the raw forms rather than the encoded forms of these components
are compared and the hexadecimal digits of escaped octets are compared without regard to case.

GridLab-1-FGS-0014-0.1 Public 78/97

Final GAT API Specification: Object Based IST-2001-32133

Destructor Destroys this GATLocation object.

GetAuthority Returns the decoded authority component of this GATLocation.
A sequence of escaped octets is decoded by replacing it with the sequence of characters that
it represents in the UTF-8 character set. UTF-8 contains US-ASCII, hence decoding has the
effect of de-quoting any quoted US-ASCII characters as well as that of decoding any encoded
non-US-ASCII characters. If a decoding error occurs when decoding the escaped octets then the
erroneous octets are replaced by ‘\\uFFFD’, the Unicode replacement character.
The String returned by this operation is equal to that returned by the GetRawAuthority opera-
tion except that all sequences of escaped octets are decoded.

Outputs:

String — authority — Decoded authority component of this GATLocation, or null if
authority is undefined.

GetRawAuthority Returns the raw authority component of this GATLocation.
The authority component of a GATLocation, if defined, only contains the commercial-at charac-
ter (‘@’) and characters in the unreserved, punct, escaped, and other categories. If the authority
is server-based then it is further constrained to have valid user-information, host, and port com-
ponents.

Outputs:

String — rawAuthority — Raw authority component of this GATLocation, or null if
authority is undefined.

GetFragment Returns the decoded fragment component of this GATLocation.
A sequence of escaped octets is decoded by replacing it with the sequence of characters that
it represents in the UTF-8 character set. UTF-8 contains US-ASCII, hence decoding has the
effect of de-quoting any quoted US-ASCII characters as well as that of decoding any encoded
non-US-ASCII characters. If a decoding error occurs when decoding the escaped octets then the
erroneous octets are replaced by ‘\\uFFFD’, the Unicode replacement character.
The String returned by this operation is equal to that returned by the GetRawFragment opera-
tion except that all sequences of escaped octets are decoded.

Outputs:

String — ragment — The decoded fragment component of this GATLocation, or null if
fragment is undefined.

GetRawFragment Returns the raw fragment component of this GATLocation.
The fragment component of a GATLocation, if defined, only contains legal URI characters.

Outputs:

String — rawFragment — Raw fragment component of this GATLocation, or null if frag-
ment is undefined.

GridLab-1-FGS-0014-0.1 Public 79/97

Final GAT API Specification: Object Based IST-2001-32133

GetHost Returns the host component of this GATLocation.
The host component of a GATLocation, if defined, will have one of the following forms:

• A domain name consisting of one or more labels separated by period characters (‘.’),
optionally followed by a period character. Each label consists of alphanum characters as
well as hyphen characters (‘-’), though hyphens never occur as the first or last characters
in a label. The last, or only, label in a domain name begins with an alpha character.

• A dotted-quad IPv4 address of the form digit+.digit+.digit+.digit+, where no digit se-
quence is longer than three characters and no sequence has a value larger than 255.

• An IPv6 address enclosed in square brackets (‘[’ and ‘]’) and consisting of hexadecimal
digits, colon characters (‘:’), and possibly an embedded IPv4 address. The full syntax of
IPv6 addresses is specified in RFC 2373: IPv6 Addressing Architecture.

The host component of a GATLocation cannot contain escaped octets, hence this operation does
not perform any decoding.

Outputs:

String — host — Host component of this GATLocation, or null if host is undefined.

GetPath Returns the decoded path component of this GATLocation.
A sequence of escaped octets is decoded by replacing it with the sequence of characters that
it represents in the UTF-8 character set. UTF-8 contains US-ASCII, hence decoding has the
effect of de-quoting any quoted US-ASCII characters as well as that of decoding any encoded
non-US-ASCII characters. If a decoding error occurs when decoding the escaped octets then the
erroneous octets are replaced by ‘\\uFFFD’, the Unicode replacement character.
The String returned by this operation is equal to that returned by the GetRawPath operation
except that all sequences of escaped octets are decoded.

Outputs:

String — path — Decoded path component of this GATLocation, or null if path is unde-
fined.

GetRawPath Returns the raw path component of this GATLocation.
The path component of a URI, if defined, only contains the slash character (‘/’), the commercial-
at character (‘@’), and characters in the unreserved, punct, escaped, and other categories.

Outputs:

String — rawPath — Raw path component of this GATLocation, or null if path is unde-
fined.

GetPort Returns the port number of this GATLocation.
The port component of a URI, if defined, is a non-negative integer.

Outputs:

Integer — port — Port component of this URI, or -1 if the port is undefined.

GridLab-1-FGS-0014-0.1 Public 80/97

Final GAT API Specification: Object Based IST-2001-32133

GetQuery Returns the decoded query component of this GATLocation.
A sequence of escaped octets is decoded by replacing it with the sequence of characters that
it represents in the UTF-8 character set. UTF-8 contains US-ASCII, hence decoding has the
effect of de-quoting any quoted US-ASCII characters as well as that of decoding any encoded
non-US-ASCII characters. If a decoding error occurs when decoding the escaped octets then the
erroneous octets are replaced by ‘\\uFFFD’, the Unicode replacement character.
The String returned by this operation is equal to that returned by the GetRawQuery operation
except that all sequences of escaped octets are decoded.

Outputs:

String — query — Decoded query component of this GATLocation, or null if query is
undefined.

GetRawQuery Returns the raw query component of this GATLocation.
The query component of a URI, if defined, only contains legal URI characters.

Outputs:

String — rawQuery — Raw query component of this GATLocation, or null if query is
undefined.

GetScheme Returns the scheme component of this GATLocation.
The scheme component of a URI, if defined, only contains characters in the alphanum category
and in the String ”-.+”. A scheme always starts with an alpha character.
The scheme component of a URI cannot contain escaped octets, hence this operation does not
perform any decoding.

Outputs:

String — scheme — Scheme component of this GATLocation, or null if scheme is undefined.

GetSchemeSpecificPart Returns the decoded scheme-specific part of this GATLocation.
A sequence of escaped octets is decoded by replacing it with the sequence of characters that
it represents in the UTF-8 character set. UTF-8 contains US-ASCII, hence decoding has the
effect of de-quoting any quoted US-ASCII characters as well as that of decoding any encoded
non-US-ASCII characters. If a decoding error occurs when decoding the escaped octets then the
erroneous octets are replaced by ‘\\uFFFD’, the Unicode replacement character.
The String returned by this operation is equal to that returned by the GetRawSchemeSpecific-
Part operation except that all sequences of escaped octets are decoded.

Outputs:

String — Decoded scheme-specific component of this GATLocation (never null),

GetRawSchemeSpecificPart Returns the raw scheme-specific part of this GATLocation.
The scheme-specific part is never undefined, though it may be empty.
The scheme-specific part of a URI only contains legal URI characters.

Outputs:

String — Raw scheme-specific component of this GATLocation (never null).

GridLab-1-FGS-0014-0.1 Public 81/97

Final GAT API Specification: Object Based IST-2001-32133

GetUserInfo Returns the decoded user-information component of this GATLocation.
A sequence of escaped octets is decoded by replacing it with the sequence of characters that
it represents in the UTF-8 character set. UTF-8 contains US-ASCII, hence decoding has the
effect of de-quoting any quoted US-ASCII characters as well as that of decoding any encoded
non-US-ASCII characters. If a decoding error occurs when decoding the escaped octets then the
erroneous octets are replaced by ‘\\uFFFD’, the Unicode replacement character.
The String returned by this operation is equal to that returned by the GetRawUserInfo operation
except that all sequences of escaped octets are decoded.

Outputs:

String — Decoded user-information component of this GATLocation, or null if it is unde-
fined.

GetRawUserInfo Returns the raw user-information component of this GATLocation.
The user-information component of a URI, if defined, only contains characters in the unreserved,
punct, escaped, and other categories.

Outputs:

String — Raw user-information component of this GATLocation, or null if it is undefined.

ToString Returns the content of this GATLocation as a String.
A String equivalent to the input string given to the GATLocation constructor, or to the String
computed from the originally-given components, as appropriate, is returned.

Outputs:

String — stringLocation — The string form of this GATLocation.

Clone Returns a deep clone of this GATLocation.

Outputs:

GATLocation — clone — A clone of this GATLocation.

GridLab-1-FGS-0014-0.1 Public 82/97

Final GAT API Specification: Object Based IST-2001-32133

4.7 class GATPreferences
specializes GATObject

Description

An instance of this class represents the user’s preferences for selecting adaptors. Currently this
class is a place holder for the user preferences, the structure of which is in development; the
matching algorithm outlined in the Match operation is used by the GAT implementation to
determine which capability provider is used to satisfy a GAT API operation.

Operations

Constructor Creates a new GATPreferences instance.

Destructor Destroys this GATPreferences instance.

Add This adds a name/value pair in which the name is a String and the value is a String to
this GATPreferences instance.

Inputs:

String — name — Name of the attribute to add.

String — value — Value of the attribute to add.

Remove Removes the name/value pair with the passed name from this GATPreferences in-
stance.

Inputs:

String — name — Name of the name/value to remove.

Set Sets the given GATTable of name/value pairs as preferences.

Input :

GATTable — preferences — Table of name/value pairs to be used as preferences.

Get Gets the current preferences as name/value pairs in a GATTable˙
Output :

GATTable — preferences — Table of name/value pairs containing the current preferences.

Match Matches the GATPreferences instance against another GATPreferences instance ex-
pressing criteria. For Match to return true, all keys present in the criteria table must be present
in the original and must match: a string-valued value in the original table is matched by a reg-
ular expression in the criteria table, and a numeric-valued key in the original table by a string
holding an arithmetical expression (e.g., ”< 5”) in the criteria table.
Inputs:

GATPreferences — criteria — Matching criteria.

Outputs:

Bool — match — True if the GATPreferences instance matches the given criteria.

GridLab-1-FGS-0014-0.1 Public 83/97

Final GAT API Specification: Object Based IST-2001-32133

Clone Clone is used to clone this GATPreferences instance, copying the GATTable. The new
GATPreferences instance is completely independent from the original one, which may be de-
stroyed with no effect on the new one. This method is used when cloning a GATContext.

Outputs:

GATPreferences — preferences — Cloned GATPreferences.

GridLab-1-FGS-0014-0.1 Public 84/97

Final GAT API Specification: Object Based IST-2001-32133

4.8 class GATStatus
specializes GATObject

Description

An instance of this class represents an error or an information message from a GAT operation or
from an underlying adaptor. instances of this class are used to provide an audit trail which the
application user can use to trace the sequence of events which happened in any particular GAT
operation; this may then be used by the application, adaptor or service developers or providers
to debug problems.
Since the GAT Engine and adaptors may do several independent operations each of which may
have associated errors or status messages, a GATStatus instance forms a node in a tree of
GATStatus instances, rather than the more normal parent-child process of a try-catch type error
mechanism.

Use cases

The application discovers that the last GAT operation had an error. It gets the status object,
and tracks through the tree of child-errors printing out information to the user indented as per
what depth it has in the tree.

Application invokes GATContext.GetStatus to get the GATStatus object, S, from the last
GAT operation.

Application gets the messages associated with S by invoking S.GetMessages, and prints
them out.

Application gets the status code associated with S by invoking S.GetStatusCode and prints
that out.

Application invokes S.GetChildren and, for each child, C, invokes C.GetMessages, C.GetStatusCode
and C.GetChildren as above, indenting the messages depending on depth in the tree.

Operations

Constructor Constructs an instance of this class with the passed message.
Inputs:

String — message — Message associated with this GATStatus.

Destructor Destroys this GATStatus instance.

SetStatusCode Sets the status code of this GATStatus.

Inputs:

Integer — code — Status code for this GATStatus.

GetStatusCode Gets the status code of this GATStatus.

Outputs:

Integer — code — Status code for this GATStatus.

GridLab-1-FGS-0014-0.1 Public 85/97

Final GAT API Specification: Object Based IST-2001-32133

AddChild Adds a child GATStatus instance to this one.

Inputs:

GATStatus — child — Child GATStatus instance.

GetChildren Gets the child GATStatus instances of this one.

Outputs:

List of GATStatus objects — children — Child GATStatus instances.

AddMessage Adds a message to this GATStatus.

Outputs:

String — message — Message for this GATStatus.

GetMessages Returns the List of messages associated with this GATStatus.

Outputs:

List of Strings — messages — Messages associated with this GATStatus.

GetParent Returns the parent GATStatus of this GATStatus.

Outputs:

GATStatus — parent — Parent GATStatus of this GATStatus.

GridLab-1-FGS-0014-0.1 Public 86/97

Final GAT API Specification: Object Based IST-2001-32133

4.9 class GATTime
specializes GATObject

Description

An instance of this class represents a point in time.

Operations

Constructor This operation constructs a GATTime instance corresponding to the passed time.

Inputs:

Integer — time — Number of milliseconds after January 1, 1970, 00:00:00 GMT.

Destructor Destroys this GATTime instance.

Equals Tests this GATTime for equality with the passed GATObject.

If the given GATObject is not a GATTime, then this operation immediately returns False.

If the passed GATObject is a GATTime, then it is deemed equal if it has a numerically equiva-
lent time to the passed GATTime instance.

GetTime This operation returns the time as the number of milliseconds after January 1, 1970,
00:00:00 GMT, an Integer

Outputs:

Integer — duration — Number of milliseconds after January 1, 1970, 00:00:00 GMT.

GridLab-1-FGS-0014-0.1 Public 87/97

Final GAT API Specification: Object Based IST-2001-32133

4.10 class GATTimePeriod
specializes GATObject

Description

An instance of this class represents a time duration, a length of time with uncertain start point.

Operations

Constructor This operation constructs a GATTimePeriod instance corresponding to the passed
duration.

Inputs:

Integer — duration — Number of milliseconds this period of time lasts.

Destructor Destroys this GATTimePeriod.

Equals Tests this GATTimePeriod for equality with the passed GATObject.

If the given GATObject is not a GATTimePeriod, then this operation immediately returns False.

If the passed GATObject is a GATTimePeriod, then it is deemed equal if it has a numerically
equivalent time duration to the passed GATTimePeriod instance.

GetDuration This operation returns the number of milliseconds this time period lasts, an
Integer

Outputs:

Integer — duration — Number of milliseconds this time period lasts.

GridLab-1-FGS-0014-0.1 Public 88/97

Final GAT API Specification: Object Based IST-2001-32133

4.11 class GATTable

Description

An instance of the GATTable class maps keys to values. Any non-null instance of String can be
used as a key, any String, primitive type (such as Integers and Floats) or GATObject instance
can be used as a values. We call these “valid types” in this section. Apart from GATObjects
and Strings, the other valid types are language dependend, and will be defined in the language
specific GAT API specifications.

Note: For some languages, native equivalents of GATTables may exist (e.g. hashtables in
Perl). For specific language bindings, these native equivalents MAY be used instead of the
GATTable class.

Operations

Constructor This operation constructs an instance of the class GATTable.

Equals Tests this GATTable for equality with the passed Object.

If the given Object is not a GATTable, then this operation immediately returns False.

For two GATTable instances to be considered as equal they must have a map from the set of
keys in the first GATTable to the set of keys in the second GATTable such that Equals() when
evaluated on the pairs of keys generated by this map returns True. In addition, the values for
the key pairs generated by this map must be equal as determined by the Equals() operation on
each value. In addition the same must be True exchanging the roles of the passed GATTable
and the called GATTable.

Destructor Destroys this GATTable.

Add Maps the specified key to the specified value in this GATTable.

Inputs:

String — key — Key to add to the GATTable instance.

Valid Type — value — Value to map to the passed key in the GATTable instance.

Get Returns the value to which the specified key is mapped in this GATTable.

Inputs:

String — key — Key to get the value for in this GATTable instance.

Outputs:

Valid Type — value — Value to which the key is mapped in this GATTable instance.

GridLab-1-FGS-0014-0.1 Public 89/97

Final GAT API Specification: Object Based IST-2001-32133

Remove Removes the specified key is from this GATTable.

Inputs:

String — key — Key to get the value for in this GATTable instance.

GetType Returns the data tyoe for the value of the specified key is maped in this GATTable.
The realization of that operation MAY be different, dependend on implementation language.
Inputs:

String — key — Key to get the value type for in this GATTable instance.

Outputs:

Integer — type — Class constant describing the value type to which the key is mapped in
this GATTable instance.

GetKeys Returns a list of keys from GATTable.

Outputs:

List of Strings — keys — List containing all keys used in that GATTable instance.

GridLab-1-FGS-0014-0.1 Public 90/97

Final GAT API Specification: Object Based IST-2001-32133

A External Classes

The present document relies on various occasions on classes which are not GATObjects. The
realisation and implementation of these types is in general language dependent, and in many
cases can be reduced to native classes. This appendix describes the minimal functionality the
GAT expects from these types. When in some language an equivalent of such classes does not
exist, GAT has to implement it.
For some of the listed classes, like Buffer, a functionally extended equivalent MAY be added as
GATClass (e.g. GATBuffer) in a later version of the specification.

GridLab-1-FGS-0014-0.1 Public 91/97

Final GAT API Specification: Object Based IST-2001-32133

A.1 class List
specializes GATObject
realizes GATAdvertiseable

Description

An instance of this class is a list of instances. Some languages have “native” List types which
MAY be used. If no such native List type exists, then a GAT implementation must include a
List type.

Equals Tests this List for equality with the passed instance.

If the passed instance is not a List instance, then this operation immediately returns False.

If the passed instance is a List instance, then it is deemed equal to this instance if it consists of
the “same” elements, as determined by the Equals operation on the respective elements, in the
same order as this List instance.

GridLab-1-FGS-0014-0.1 Public 92/97

Final GAT API Specification: Object Based IST-2001-32133

A.2 class String
specializes GATObject
realizes GATAdvertiseable

Description

An instance of the String class represents a character string. The class String provides various
operation for manipulation of String instances.

Operations

Constructor Constructs a new String by decoding the specified List of bytes using the specified
charset. The length of the new String is a function of the charset, and hence MAY not be equal
to the length of the byte List. The behaviour of this constructor when the given bytes are not
valid in the given charset is unspecified.
The currently supported charsets are as follows

• US-ASCII — Seven-bit ASCII, a.k.a. ISO646-US, a.k.a. the Basic Latin block of the
Unicode character set

• ISO-8859-1 — ISO Latin Alphabet No. 1, a.k.a. ISO-LATIN-1

• UTF-8 — Eight-bit UCS Transformation Format

• UTF-16BE — Sixteen-bit UCS Transformation Format, big-endian byte order

• UTF-16LE — Sixteen-bit UCS Transformation Format, little-endian byte order

• UTF-16 — Sixteen-bit UCS Transformation Format, byte order identified by an optional
byte-order mark

Inputs:

Buffer — buffer — The bytes to be decoded into characters.

String — charset — Name of a supported charset.

Equals Compares this string to the specified object. The result is True if and only if the
argument is not null and is a String object that represents the same sequence of characters as
this object

Destructor Destroys this String object.

GetBytes Encodes this String into a sequence of bytes using the named charset, storing the
result into a new byte List. The behaviour of this operation when this string cannot be encoded
in the given charset is unspecified.

Inputs:

String — charset — Charset to use for conversion.

Outputs:

Buffer — buffer — Resultant bytes.

GridLab-1-FGS-0014-0.1 Public 93/97

Final GAT API Specification: Object Based IST-2001-32133

A.3 class Buffer
realizes GATAdvertiseable

Description

A buffer is a container for arbitrary data. In most languages, this can be represented as an array
of bytes. The application is responsible for reading and writing such buffers, and in particular
for correct (de)serialisation of primitive and complex types during that process.

The GAT API specification MAY in a later version be extended with a GATBuffer class providing
more sophisticated handling of typed data.

Thread safety Buffers need not to be safe for use by multiple concurrent threads. If a buffer
is to be used by more than one thread then access to the buffer SHOULD be controlled by
appropriate synchronisation.

GridLab-1-FGS-0014-0.1 Public 94/97

Final GAT API Specification: Object Based IST-2001-32133

B Glossary

advertisement — A public notice. An entry in the Advert Directory.

advertise — To make publicly and generally known.

ancestor — An element found by following a path of one or more parent relationships.

attribute — A description of a named slot of a specified type in a class; each object of the class
separately holds a value of the type.

binding — The assignment of values to parameters to produce an individual element from a
parameterised element.

class— The descriptor for a set of objects that share the same attributes, operations, methods,
relationships, and behaviour.

component— A physical replaceable part of a system that packages implementation and con-
forms to and provides a realization of a set of interfaces.

connection — A bi-directional communication channel.

constructor — A class-scope operation that creates and initialises an instance of a class.

descriptor — A model element that describes the common properties of a set of instances, includ-
ing their structure, relationships, behaviour, constraints, purpose, and so on.

destructor — A class-scope operation that destroys an instance of a class.

instance— An individual entity with its own identity and value. A descriptor specifies the form
and behaviour of a set of instances with similar properties. An instance has identity and values
that are consistent with the specification in the descriptor.

interface — A named set of operations that characterise the behaviour of an element.

model element — An element that is an abstraction drawn from the system being modelled.

node— A run-time physical object that represents a computational resource, which generally
has at least memory and often processing capability.

null — null defines in a language and type dependent way the absence of a value or object.

object — A discrete entity with a well-defined boundary and identity that encapsulates state
and behaviour.

operation— A specification of a transformation or query that an object may be called to execute.

private — A visibility value indicating that the given element is not visible outside its own
namespace even to descendants of the namespace.

GridLab-1-FGS-0014-0.1 Public 95/97

Final GAT API Specification: Object Based IST-2001-32133

process— A heavyweight unit of concurrency and execution in an operating system.

public — A visibility value indicating that the given element is visible outside its own namespace.

resource — An entity providing some capability. Example for resources are computers (providing
compute power), networks (providing data transport capabilities), services (providing capabil-
ities specific to the service). Resource Management Systems manage (discover, query, reserve,
schedule, utilize, ...) one or more types of resources, but typically not all types simultaneously.

realize — To provide the implementation for a specification element.

specialization — To produce a more specific description of a model element by adding children.

state — A condition or situation during the life of an object during which it satisfies some con-
dition, performs some activity, or waits for some event.

stream — A uni-directional communication channel.

template — A parameterised model element. To use it, the parameters must be bound to actual
values.

GridLab-1-FGS-0014-0.1 Public 96/97

Final GAT API Specification: Object Based IST-2001-32133

References

[1] K. Davis and T. Goodale, “GAT API Specification”, ID: GridLab-1-GAS-0003-0.1DRAFT.

[2] K. Davis and T. Goodale, “D1.2 Technical Specification” ID: Gridlab-1-D1.2-
0002.TechnicalSpecification.

[3] “Grid Resource Management System”, http://www.gridlab.org/WorkPackages/wp-
9/index.html.

[4] S.Bradner, “RFC 2119: Key words for use in RFCs to Indicate Requirement Levels,”
http://www.ietf.org/rfc/rfc2119.txt.

[5] J.Rumbaugh, I. Jacobson, G. Booch, “The Unified Modeling Language Reference Manual”,
Addison-Wesley, Reading, Massachusetts, 1999.

[6] http://www.triana.com.

[7] Jeffrey, E. F. Friedl, “Mastering Regular Expressions”, O’Reilly & Associates; 2nd edition
(July 15, 2002).

[8] Henry Spencer, “regex — POSIX 1003.2 regular expressions”, Unix Manpages, chapter 7.

GridLab-1-FGS-0014-0.1 Public 97/97

http://www.gridlab.org/WorkPackages/wp-9/index.html
http://www.gridlab.org/WorkPackages/wp-9/index.html
http://www.ietf.org/rfc/rfc2119.txt
http://www.triana.com

	Introduction
	Scope of Document
	Structure of Document
	How to read this Document
	Status of this Document
	RFC 2119 and this Document
	UML and this Document

	API Descriptors List
	GAT Application API Descriptors
	GAT Application Utility API Descriptors
	GAT Adaptor Registration API Descriptors
	GAT Adaptor Utility API Descriptors

	GAT Application API Descriptors Descriptions
	The GAT Advertisement Subsystem
	GATAdvertisable
	GATAdvertService
	The GAT File and Streaming Subsystem
	GATStreamable
	GATEndpoint
	GATPipeListener
	GATPipe
	GATFileStream
	GATFile
	GATLogicalFile
	The GAT Event and Monitoring Subsystem
	GATRequestListener
	GATRequestNotifier
	GATMonitorable
	GATMetric
	GATMetricEvent
	GATMetricListener
	The GAT Resource Subsystem
	GATSoftwareDescription
	GATResourceDescription
	GATSoftwareResourceDescription
	GATHardwareResourceDescription
	GATResource
	GATSoftwareResource
	GATHardwareResource
	GATJobDescription
	GATJob
	GATResourceBroker
	GATReservation

	GAT Application Utility API
	GATObject
	GATContext
	GATSecurityContext
	GAT<T>CredentialService
	GATSelf
	GATLocation
	GATPreferences
	GATStatus
	GATTime
	GATTimePeriod
	GATTable

	External Classes
	List
	String
	Buffer

	Glossary

