
User-Friendly and Reliable Grid Computing
Based on Imperfect Middleware

Rob V. van Nieuwpoort, Thilo Kielmann and Henri E. Bal
Vrije Universiteit Amsterdam
De Boelelaan 1081, 1081 HV
Amsterdam, The Netherlands

rob, kielmann, bal @cs.vu.nl
www.cs.vu.nl/ibis

ABSTRACT
Writing grid applications is hard. First, interfaces to existing grid
middleware often are too low-level for application programmers
who are domain experts rather than computer scientists. Second,
grid APIs tend to evolve too quickly for applications to follow.
Third, failures and configuration incompatibilities require applica-
tions to use different solutions to the same problem, depending on
the actual sites in use.

This paper describes the Java Grid Application Toolkit (Java-
GAT) that provides ahigh-level, middleware-independentandsite-
independentinterface to the grid. The JavaGAT usesnested excep-
tions and intelligent dispatchingof method invocations to handle
errors and to automatically select suitable grid middleware imple-
mentations for requested operations. The JavaGAT’sadaptor writ-
ing frameworksimplifies the implementation of interfaces to new
middleware releases by combining nested exceptions and intelli-
gent dispatching with rich default functionality. The manyappli-
cations and middleware adaptors that have been provided by third-
party developers indicate the viability of our approach.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; D.2.6 [Software Engineering]: Programming Environments

Keywords
grid computing, intelligent dispatching, nested exceptions

1. INTRODUCTION
Grid computing aims to integrate collections of heterogeneous

resources across administrative boundaries into a single virtual sys-
tem (a grid). In this paper, we identify and solve three problems
that interfere with the widespread adoption of grid technology for
production use today.

First, a large number of wildly varying grid middleware systems
is currently being developed. The standardization landscape has
not settled yet, and grid technology and application programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC07November 10-16, 2007, Reno, Nevada, USA
Copyright 2007 ACM 978-1-59593-764-3/07/0011 ...$5.00.

interfaces (API’s) are still a topic of research. As of today, grid
middleware and API’schange frequentlyand are oftenunstableor
incomplete[18]. Furthermore, different middlewares often offer
different functionality.

Second, as grid computing still is a research area with many open
questions, middleware implementations tend to focus on technical
issues, and providelow-level programming interfacesas a result.
For instance, the Globus toolkit [15], a widely used middleware
platform, significantly changed its API over the last three mayor
versions. However, all versions expose the underlying technology
(respectively proprietary protocols, web-services and the Web Ser-
vices Resource Framework (WSRF)). It is clear that this is interest-
ing and necessary research, but for today’s gridusersthese techni-
cal details are irrelevant and exposing them is counter productive.
Much like home appliance users are not interested in the details of
electrical power generation, grid application programmers are typi-
cally not interested in the technical issues behind the grid, and want
to use the grid for production systems today, using a high-level in-
terface.

Third, heterogeneityin processors, the operating system, con-
stantly changing and evolving middleware, and the fact thatdif-
ferent grid sites use different grid middleware make it extremely
difficult to develop and deployportablegrid applications.

This paper deals with the Java Grid Application Toolkit (Java-
GAT), which solves the three aforementioned problems. The low-
level problem is addressed by implementing the GAT [10] speci-
fication, which is ahigh-levelAPI that aims to facilitate develop-
ment of complex grid applications. The GAT specification is lan-
guage independent, and implementations for C, C++, Python and
Java exist. The GAT API is object oriented and offers high-level
primitives for access to the grid,independent of the grid middle-
ware that implements this functionality. The JavaGAT is the Java
reference implementation of the GAT API. The problem of hetero-
geneous processors and operating systems is solved becausewe use
virtualization techniques. In this case, we exploit the fact that Java
uses a virtual machine based approach.

The solutions for the imperfect and evolving middleware andfor
the heterogeneity problems are discussed below. JavaGAT inte-
grates multiple grid middleware systems with different andincom-
plete functionality into a single, consistent system, using a tech-
nique calledintelligent dispatching. This technique dynamically
forwards (dispatches) application calls on the JavaGAT APIto one
or more grid middlewares that implement the requested function-
ality. The selection process is done at runtime, and uses policies
and heuristics to automatically select the best available middle-
ware, enhancing portability. If a grid operation fails, theintelligent
dispatching feature will automatically select and dispatch the API
call to an alternative grid middleware. This process continues until

a grid middleware successfully performs the requested operation,
achieving transparent fault tolerance. The JavaGAT definesspe-
cial nested exceptionsthat contain the reason for failure for each
individual middleware. When no grid middleware can performthe
requested operation, the JavaGAT throws the nested exception to
facilitate reasoning about errors and debugging, improving appli-
cation reliability. Equally important, JavaGAT defines a frame-
work for developing grid middleware bindings. The framework
contains a large collection of generic code, significantly simplify-
ing this process.

It is important to recognize that the middleware developersare as
important as the end users: without robust bindings to middleware,
a grid API is useless. Because of the sheer number of different
middleware systems and their constantly changing APIs, we cannot
provide access to all middleware systems ourselves. Furthermore,
because writing middleware bindings for JavaGAT is straightfor-
ward, middleware developers achieve the freedom to experiment
with different architectural designs and new techniques. This can
now be done without interfering with the application programmers,
as the top-level API (the JavaGAT API) remains fixed.

The contributions of this paper are as follows:

• We introduce a novel technique calledintelligent dispatch-
ing that allows to integrate the heterogeneous and incom-
plete functionality offered by current grid middlewares into
a simple and consistent API. Intelligent dispatching solves
portability problems, both of the underlying computing plat-
form (OS, library versions, architecture) and the different
grid middleware systems and versions. Intelligent dispatch-
ing can even provide transparent fault tolerance if operations
are not present in a middleware system, or if they fail.

• We define specialnested exceptions, which can contain mul-
tiple inner exceptions describing the reason why grid oper-
ations failed. Nested exceptions allow applications to deal
with and reason about errors, even when intelligent dispatch-
ing tries multiple grid middlewares subsequently.

• We define a powerful interface and framework that can be
used by grid middleware developers to quickly and efficiently
implement GAT bindings to their middleware system, with-
out unnecessary duplication of code.

• By offering solutions for the heterogeneity problems, while
providing high-level programming interfaces, we achieve func-
tionality that grid users urgently need today, despite the (flaws
of) evolving middleware, bringing production use of the grid
a step closer.

The remainder of this paper is structured as follows. In the Sec-
tion 2, we describe the API and global structure of the JavaGAT.
We use examples to demonstrate the GAT API and to explain why
intelligent dispatching is useful. Section 3 describes thenested ex-
ceptions. The intelligent dispatching technique is described in de-
tail in Section 4. Section 5 describes the adaptor writing framework
that facilitates the implementation of new middleware bindings. We
evaluate our approach and show some experimental results inSec-
tion 6. Finally, we discuss related work in Section 7, and conclude
in Section 8.

2. THE JAVAGAT
The JavaGAT currently is the most advanced implementation of

the GAT API [10], which was defined in the EU-funded GridLab
project [4]. Even though GridLab was finished in 2005, the user

Figure 1: The structure of the JavaGAT implementation.

base of JavaGAT is still increasing, and we actively continued de-
veloping JavaGAT in the context of the Ibis project [5], and the
Virtual Labs for E-Science (Vl-e) [9] project, and will continue to
do so in the years to come. Both projects involve grid applica-
tion programmers who need to deploy and use their applications
on the grid today. It is important to note that grid application pro-
grammers usually arenot computer scientists. Our users include
physicists, chemists, astrophysicists, bioinformatics,medical re-
searchers, etc. They are typically not interested in the grid mid-
dleware and the technology that is used underneath (web-services,
WSRF, etc). Furthermore, users generally have the requirement to
use several different externally-managed compute clusters simulta-
neously for production work (e.g., since they have bought cycles
there). These clusters have different architectures and use different
grid middleware systems.

Since the initial JavaGAT implementation we have taken advan-
tage of the user feedback, and identified and resolved many issues
that were present in the original GAT specification. As a result, the
JavaGAT implementation drifted away from the specification. We
found that users deem integration with existing Java packages and
tools extremely important. Sometimes this required API changes
that deviate from the specification. For instance, the remote file
access interface of the JavaGAT differs from the GAT specifica-
tion [10], and is compatible to Java’s standard file API, because that
is what programmers are familiar with. In other areas, we extended
JavaGAT beyond the scope of the GAT specification. For exam-
ple, the GAT specification only specifies access to files, and not
to directories. In JavaGAT, users can use directories in allplaces
where they can use files (e.g., to stage in a directory with allits
subdirectories before a job is started). JavaGAT also adds an appli-
cation steering API, while the original specification only deals with
monitoring.

2.1 The Global Structure of the JavaGAT
The global structure of the JavaGAT is shown in Figure 1. The

system consists of four layers. The top layer is the high-level user
API. The second layer is the JavaGAT engine, wich is responsible
for delegating the API calls to the correct middleware. Because
JavaGAT has to support multiple grid middlewares, we use a “plug-
in” architecture. The third layer of the JavaGAT is the interface
that is used by these plug-ins. We call this the Capability Provider
Interface (CPI). The bottom layer consists of the plug-ins,called
adaptorsin this context. The adaptors contain code that binds to a
specific middleware platform.

The GAT API is object oriented: the grid functionality is exposed
through GAT objects, such asFile,Job andResourceBroker.
Grid applications can create GAT objects with the GAT Objectfac-
tory (the leftmost box in the API layer of Figure 1). The API pack-
ages provide support for monitoring (both for the grid itself and for
applications), steering of applications, grid I/O (e.g., remote file ac-
cess), resource brokering and job submission, and an information
system to store application-specific data. Each GAT API usesa
set of Java interfaces to define its functionality. The only excep-
tion is the GAT I/O API, which does contain a set of interfaces, but
also provides an additional set of classes that extend the classes in
the standardjava.io package. This way, users of the JavaGAT can
use remote files with the same classes they are familiar with for
local files. Our users indicate that this is a tremendous advantage;
it makes it trivial to grid-enable the I/O part of an existingJava
application.

One of the central objects in the JavaGAT API is the GATCon-
text. It contains handles to security information. The usercan spec-
ify security information (credentials, passwords, etc) byusing Se-
curityContexts, which are in turn stored in the GATContext.An
application can use more than one GATContext, and can restrict
access that adaptors have to security information. As we will ex-
plain in more detail in Section 4.2, the GATContext also functions
as a container for engine and adaptor state.

Another central idea in GAT is the concept ofpreferences. The
Preferences class contains key-value pairs (both Strings)that ex-
press information that is passed on to the adaptors. For example,
the preference ("ftp.connection.passive", "true") in-
structs the FTP adaptor to use passive connections. Preferences are
typically opaque to the engine, they are just forwarded to the adap-
tors. There is, however, a small set of preferences that is interpreted
by the engine itself. An example of this is a preference to enforce
the use of a particular adaptor for a GAT object. Preferencescan
be global, or local for a specific GAT Object. In the latter case, the
application provides the preferences when the object is created.

Throughout the JavaGAT, Uniform Resource Identifiers (URIs)
are widely used, especially for file access. URIs are a superset of
URLs. The engine has some built-in knowledge of URIs, and can
use them to select adaptors. The engine knows that a URI with an
"ssh" scheme can only be used by adaptors that support the SSH
protocol, for instance, and will thus not instantiate otheradaptors.
An important special scheme that GAT defines is the "any" scheme,
which means that the engine is allowed to select any adaptor.For
a file, for instance, this means that it can be transfered withany
transfer protocol that works. As we will explain later, the JavaGAT
tries to use an intelligent mechanism to select the best adaptor in
these cases. The “any” scheme is the most widely used URI scheme
in applications.

The capability provider interface (the third layer in Figure 1)
contains a set of abstract Java classes that implement the GAT API
interfaces. The CPI classes thus can contain generic code that is
shared between the adaptors. JavaGAT makes extensive use ofthis
feature, to facilitate the adaptor writing process. Because JavaGAT
is human-oriented, we consider the adaptor interface as important
as the API that is exported to the application. Because grid mid-
dleware functionality and APIs change frequently, it is important
that it is as easy as possible to develop GAT adaptors for new mid-
dleware, or to modify the adaptor if the middleware changes.Due
to the great number of middleware platforms, and their frequency
of changing, we cannot write and maintain all adaptors ourselves.
JavaGAT thus exports the GAT API to higher layers (typicallya
grid application), and provides a plug-in interface (the CPI) to the
lower layers (i.e., the adaptors). The engine is responsible for rout-

1 import org . g r i d l a b . g a t .∗ ;
2 import org . g r i d l a b . g a t . i o . F i l e ;
3

4 pub l i c c l a s s Copy {
5 pub l i c s t a t i c vo id main (S t r i n g [] a r g s)
6 throws E xcep t ion {
7 GATContext c o n t e x t =new GATContext () ;
8 URI sou rce = new URI (a r g s [0]) ;
9 URI d e s t = new URI (a r g s [1]) ;

10

11 / / Create a GAT F i l e o b j e c t
12 F i l e f i l e = GAT. c r e a t e F i l e (con tex t , sou rce) ;
13

14 f i l e . copy (d e s t) ; / / The a c t u a l f i l e copy .
15

16 GAT. end () ; / / Shutdown t h e JavaGAT .
17 }
18 }

Figure 2: Actual code to copy (remote) files and directories with
the JavaGAT.

Figure 3: A third party copy using different middlewares.

ing calls between the layers.

2.2 An Example: Copying Files
We illustrate the concepts explained above with a JavaGAT pro-

gram that can copy files and directories. The code shown in Fig-
ure 2 isnot pseudo code, but actual code that implements this func-
tionality. The example copies a file (or directory) that is passed as
the first command-line argument to the destination that is the sec-
ond argument. The examples below run this program on a user’s
workstation (runGATApp is a small wrapper script that sets up the
Java environment).

• A local copy:
runGATApp Copy /bin/echo foo

• A remote to local copy with SSH:
runGATApp Copy ssh://machine.a//bin/echo foo

• A remote to local copy with GridFTP:
runGATApp Copy gsiftp://machine.a//bin/echo foo

• A remote to local copy, letting JavaGAT choose the “best”
protocol, because the URI scheme is “any”:
runGATApp Copy any://machine.a//bin/echo foo

• A third party copy: from a remote location to another remote
location, while letting JavaGAT choose the best transfer pro-
tocol:
runGATApp Copy any://machine.a//bin/echo

any://machine.b/foo

The example shows the flexibility and expressiveness of the GAT
API. It also illustrates what we mean with the human-oriented ap-
proach: an application programmer wants to think in terms offile
objects, not in terms of (web) services, WSRF, etc. Althoughde-
sirable as a flexible technical infrastructure for middleware, such
models are not suitable as an application programmer interface.
JavaGAT provides a high-level API, and can even hide the grid
middleware and transfer protocols altogether, as is shown by the
use of the "any" scheme. In this case, the engine will automati-
cally select the “best” transfer mechanism, and will even retry with
other protocols if the best mechanism fails, until one is found that
works. What we mean with the “best mechanism”, and how the
engine selects it will be described in Section 4. The JavaGATcan
automatically perform copies between two remote sites thatuse dif-
ferent grid middlewares, even if a direct copy is not possible. An
example of this is shown in Figure 3.

2.3 Designing for Portability, Fault-Tolerance,
and Middleware Evolution

The examples above demonstrate that it is important to deal with
portability, changing and incomplete middleware and faulttoler-
ance when designing a high-level grid API. We discuss each of
these areas in turn below.

Portability
An important feature to obtain a better user experience is portabil-
ity. There are two aspects to portability. The first aspect isthat it
is important that development and deployment of the application is
as easy as possible. With traditional languages, applications have
to be recompiled for each platform. Different operating systems
and different (versions of) libraries make this extremely error prone
and time consuming. We solve this problem by using a Java-based
approach. Java has several properties making it attractivefor Grid
computing, notably its "write-once, run anywhere" portability. Java
code can run without recompilation on any Grid site that has aJava
virtual machine (JVM) installed.

The second portability aspect is that of heterogeneity of the grid
middleware. If the sites where a grid application is deployed use
different (versions of) middleware, a user-friendly grid API auto-
matically selects a working middleware (e.g., see Figure 3). A spe-
cial mechanism is needed that forwards API calls to a specificmid-
dleware at run time, as the correct middleware used is not known
at compile time. The forwarding of methods is generally called
dispatching[14].

We call the approach we take with the JavaGATintelligent dis-
patching for two reasons. First, the JavaGAT uses several tech-
niques to automatically select the “best” middleware at runtime
(See Section 4). Second, the actual middleware that has to exe-
cute a specific operation is selected only whenever an operation
is invoked, and not when the corresponding API object is created.
Thus, JavaGAT uses function-level binding instead of object-level
binding. A single API object can thus use multiple middlewares.
Intelligent dispatching is more robust and flexible, and thus more
user-friendly than static dispatching. For example, if a file is to
be copied from a workstation to machine A and to machine B, the
transfer from the workstation to site A can use a different transfer
mechanism than the transfer from the workstation to site B. For
example, the first transfer may use SSH, while the second uses
GridFTP. When static dispatching is used, the programmer needs
to know this fact in advance.

With static dispatching, an application has to createtwo different
source file objects, one explicitly with the SSH protocol, and one
explicitly with the GridFTP protocol. As a result, hiding the details

Figure 4: A NestedException.

of the underlying middleware is effectively impossible, because the
application has to explicitly specify the adaptors that have to be
used. With the techniques introduced in this paper, users can be
oblivious to these technical details. The intelligent dispatching fea-
ture seperates the JavaGAT from other similar projects. No other
framework can do this, including GAT implementations for other
languages. We will discuss intelligent dispatching in moredetail in
Section 4.

Fault Tolerance
Grid APIs should also deal with faults. We demonstrate that awell-
designed dispatching mechanism can provide this by subsequently
executing operations with different grid middlewares, until the op-
erations succeeds (see Section 4). Obviously, this can onlywork if
multiple middlewares are applicable and implement the requested
operation. If no middleware can successfully perform the requested
operation, failure has to be reported to the grid application.

In Section 3 we show that this can be done in the context of intel-
ligent dispatching by using special nested exceptions. If all avail-
able middlewares failed, the JavaGAT throws a nested exception,
containing a list of middlewares that were tried, and the reason for
each failure. The application can use the nested exception to inves-
tigate and deal with the error.

The JavaGAT can tolerate both theunavailability and thefail-
ure of an implementation. However, it cannot deal with transient
failures (failures that are not detected by the middleware itself) and
operations that do not terminate.

Dealing with Changing and Incomplete Middleware
Intelligent dispatching significantly simplifies adaptor writing. For
example, a file adaptor might only support a highly optimizedim-
plementation offile.copy, but nofile.deleteoperation. In that case,
the JavaGAT engine will automatically fall back to another adap-
tor that does implement the delete operation (if such an adaptor is
available). This feature is of key importance, because manygrid
services do not provide thecompletefunctionality that the GAT
API offers. The JavaGAT exploits intelligent dispatching to auto-
matically use multiple services to implement the functionality of a
single GAT object.

3. NESTED EXCEPTIONS
Discussions with our users led to the insight that reliable grid

applications need to reason about errors. For instance, a reliable
system may retry certain operations if a remote service is down or
unreachable, as it may be restarted, or the cause could be a tem-
porary network failure. However, if the problem is caused byan
invalid user credential, retrying is useless as this situation will not
rectify itself. Instead, the user must be informed. Therefore, an ap-
plication must be able to differentiate between different errors, and
well-defined exception types are important.

Nested exceptions are thrown by the JavaGAT engine whenall
adaptors failed. Standard Java exceptions can contain another ex-
ception that caused it. JavaGAT generalizes this idea: NestedEx-
ceptions can have more than one cause. In this case, there is one
cause for each adaptor that failed. NestedExceptions also contain
the name of the adaptor that threw each inner exception. Further,
NestedExceptions have methods to iterate over the inner excep-
tions, methods to print meaningful strack traces, etc. An example
of a NestedException is shown in Figure 4. The nested exceptions
and the adaptors work together to produce user-intelligible error
messages. If a nested exception is printed, it produces one line
per adaptor that failed. The adaptors are responsible for produc-
ing meaningful error messages. The nested exception in Figure 4
would produce the following output:

--- START OF NESTED EXCEPTION ---
LocalFileAdaptor failed: Cannot copy to remote destination
SshFileAdaptor failed: Invalid user name or password
GridFTPFileAdaptor failed: Credential expired
--- END OF NESTED EXCEPTION ---

A stack trace of a nested exception is handled similarly: thestack
traces of all adaptors are subsequently printed on the screen.

The original GAT specification does not define any exceptions,
let alone nested exceptions, as the specification is language-neutral,
and some languages do not have exceptions. However, we found
that this feature makes it substantially easier for application pro-
grammers to debug their applications.

A key observation concerning intelligent dispatching is that the
JavaGAT engine always catchesall exceptions and errors when it
invokes methods on adaptors. The rationale behind this is the fol-
lowing. JavaGAT is a complex piece of software, but it also uses
and depends on many external libraries which are equally com-
plex themselves. Especially the adaptors which bind to gridmid-
dleware usually have many dependencies. All complex software
contains errors, and we assume that the libraries do as well.In
practice, we found that this is a realistic assumption, in particular
for rapidly changing and evolving grid middleware. We regularly
experience errors and crashes in grid middleware libraries, espe-
cially in corner cases that are not frequently tested. For example,
we found that a certain library crashes when we request a listing of
a directory that contains more that a certain number of files.Java-
GAT works around the instability problems by assuming thatthings
can and will go wrongin complex distributed systems, and that li-
braries contain bugs. Typical examples of errors that can occur
are null-pointer dereferences and arrays that are indexed outside
their bounds. As long as a library does not hang indefinitely,Java-
GAT’s intelligent dispatching mechanism will effectivelyprovide
fault tolerance, and will select another adaptor in case of errors.
This process continues until an adaptor successfully performs the
requested operation, or until all adaptors have failed. We assume
that adaptors do not fail silently without throwing an exception.

4. INTELLIGENT DISPATCHING
In this section we will explain intelligent dispatching in detail.

The mechanism consists of two steps. First, when a GAT objectis
created, an initial filtering is done, and the adaptors that can imple-
ment the object are instantiated. Second, when a method is invoked
on the object created in the previous step, the method must bedis-
patched to one or more adaptors.

When the JavaGAT engine is initialized, it must load the adaptors
that implement the actual grid functionality. To locate theadaptors,
JavaGAT uses an approach that is similar to Java’s classpathmech-
anism, because it is easy to use and familiar to Java programmers.

Figure 5: The implementation of a GAT object.

JavaGAT adaptors are distributed in Javajar files, which contain
compiled Java code. The manifest in each jar file describes which
classes implement which JavaGAT API. Jar files can be signed with
a digital signature, and signed jar files could have more privileges
than normal jar files. During startup, the engine dynamically loads
the code in the jar file into the running application.

4.1 GAT Object Creation and Adaptor
Instantiation

When an application creates a GAT object using the GAT object
factory, the engine must determine which of the available adap-
tors are applicable for the requested object, and it has to instantiate
them. In most cases, multiple adaptors will apply. Therefore, Java-
GAT creates a proxy class that implements the interface of the re-
quested object, but forwards the application’s calls to oneor more
adaptors. We describe the initial adaptor selection process and the
creation of the GAT object in this section. The next section explains
how the proxy class dynamically dispatches the invocationson the
GAT object to the adaptors. Figure 5 shows the internal structure
of a GAT object, in this case aFile. Although trivial for the user,
internally GAT object creation is a complex process that consists of
several separate steps, which are described below, using Figure 5 as
a reference.

1. Before creating any adaptors, the JavaGAT engine createsa
new nested exception (See section 3). If an adaptor is not
selected for some reason, an exception describing the reason
is added to the nested exception. The nested exception can
in turn be investigated by the application for reliability (See
Section 3), testing and debugging purposes.

2. When a GAT object is created, the application can specify
additional local preferences. These are merged into a single
set with the global preferences that are attached to the GAT-
Context (typically, applications use only one GATContext).
Local preferences override global preferences. The resulting

set is matched against the preferences that are specified in
the manifest of the adaptor jar file. The merged list of ap-
plication preferences must contain all preferences required
by the adaptor. If not all required preferences are matched,
the engine will not select the adaptors in the jar file for the
requested GAT object. In this case, the engine will create
a specialAdaptorNotSelectedException, which is defined in
the JavaGAT API, so the application can determine this fact.
Currently, most adaptors have an empty list of required pref-
erences, so they can always be selected.

The JavaGAT engine also defines special preferences that al-
low an application to enforce the use of a specific adaptor.
Such a preference could for instance be "File.adaptor.name",
with the value set to "ssh". Effectively, specifying prefer-
ences like this disable JavaGAT’s intelligent dispatchingfea-
ture: only one adaptor is allowed as an implementation of a
certain object. This mechanism can be useful for testing and
debugging of applications and adaptors alike.

3. Instantiate all remaining adaptors that were not filteredout
in the previous step. The JavaGAT engine uses Java’s reflec-
tion mechanism to lookup and invoke the constructor for the
adaptors that remain after the filtering process.

4. Filter out adaptors where the constructor threw an exception,
and add this exception to the nested exception. There can be
many reasons for an adaptor to throw an exception, and the
JavaGAT API defines several exception types for some com-
mon reasons. A frequently occurring case, for instance, is
that the adaptor is not applicable. An example of this is when
the user creates a file with a URI that contains a hostname,
which refers to a remote machine. The local file adaptor is
obviously not applicable in this case, as it can only access
files on the local disk. Another example is the creation of a
file object where the URI contains a specific scheme compo-
nent, like “sftp”. Only adaptors that understand this scheme
are applicable. For the others, JavaGAT throws theAdap-
torNotApplicableException, which is defined in the JavaGAT
API. There can be multiple adaptors that understand a partic-
ular scheme. For instance, the default JavaGAT distribution
currently contains three different SFTP adaptors that use dif-
ferent libraries.

Another common reason why an adaptor cannot be initial-
ized is that the required middleware is not installed, or that a
required service is not running. Finally, there can be a prob-
lem with the security context that is provided, a user name
or password can be invalid, or a credential could be expired.
JavaGAT also defines exception types for these cases.

5. If no adaptors remain after the previous steps, there is no
adaptor that can implement the requested object. In this case,
the JavaGAT engine throws the nested exception that con-
tains the reason for the adaptors to fail. The application or
user can now investigate the reasons for failure, and take
appropriate action. We found that, in practice, the cause is
often a misconfiguration or a middleware failure. For in-
stance, in some cases the user specifies a certain scheme in a
URI (SSH, FTP) or selects a particular adaptor, as he knows
which middleware is installed on a particular resource. This
effectively disables JavaGAT’s intelligent dispatching fea-
ture. If the selected adaptor is not applicable because the
service is down or the user credential is not initialized or ex-
pired (the most common error), JavaGAT will notify the user
of this fact by throwing the nested exception.

6. When, after the selection process, multiple applicable adap-
tors remain, JavaGAT will sort them. This is mostly done
for performance reasons. For instance, file transfers are typ-
ically faster with GridFTP than with SSH, as GridFTP can
use parallel data streams. Another reason for a particular or-
der could be security: the most secure transfer protocol could
be tried first (much like SSH does). To specify the order in
which adaptors are tried, the JavaGAT user or application
can specify anadaptor ordering policy. The JavaGAT API
defines the AdaptorOrderingPolicy class, and an easy way of
creating user-defined policies. Finally, JavaGAT providesa
default policy that aims to use a reasonable ordering of all
adaptors that are distributed with the standard JavaGAT dis-
tribution. Which policy should be used can be specified by
the application code, and can be overridden by the user (by
using a command-line option that sets a Java system prop-
erty). The idea of adaptor ordering policies and the mecha-
nism that JavaGAT uses to implement them are not specified
in the GAT specification, but is a novel feature in the Java-
GAT. We found that it is a useful feature for advanced users.
Typically, the default policy supplied by the JavaGAT is suf-
ficient, so less advanced users are not bothered with this. The
instantiated adaptors are shown at the bottom of Figure 5.

7. Create a proxy that will forward calls to the adaptors. Be-
cause the application’s method invocation on a GAT object
must be forwarded to one or more adaptors, the engine has to
create an object that implements the API of the requested ob-
ject, and that intercepts and forwards the calls to the adaptors.
We use the standardjava.lang.reflect.Proxymechanism to do
this. This mechanism dynamically generates a proxy class
that implements a set of requested interfaces at runtime. In
our case, the interface that must be implemented is the Java-
GAT interface for the requested GAT object. The generated
proxy class implements the requested interface, and will later
be returned to the application as the GAT object. The proxy
object is the top-level object in Figure 5. The proxy will
forward the application’s invocations on it’s interface toan
invocation hander.

The engine creates an invocation handler object, calledAdap-
torInvocationHandler, that has a reference to the ordered list
of selected adaptors. When an application invokes a method
on a GAT object, the method is actually invoked on the gen-
erated proxy. The name of the method and the parameters
of the invocation are provided to the invocation handler as
parameters. The invocation handler can now use Java’s re-
flection mechanism to invoke the requested method on the
adaptors. We will explain this process in more detail in the
next section. In Figure 5, the invocation handler is repre-
sented by the box in the center.

The mechanism described above is a novel feature of the Java-
GAT. All other GAT implementations and other high-level grid
middlewares use static dispatching instead of intelligentdispatch-
ing. With static dispatching, only one user-specified adaptor is in-
stantiated when a grid API object is created. JavaGAT, in contrast,
selects adaptors dynamically, and new adaptors that were not avail-
able at the time the application was developed are a part of this
process. Although the adaptor selection process is quite complex,
it is transparent for the application. Nevertheless, advanced users or
applications can still influence the process using orderingpolicies,
preferences, and URI schemes.

Figure 6: Invoking a method on a GAT object.

4.2 Intelligent Dispatching of GAT Object
Methods

We will explain the inner workings of the GAT engine when a
method is invoked on a GAT object by using an example. Figure 6
shows the same GAT File object we used in the previous section,
but now annotated with the steps that are taken when an application
invokes a method on the object. We will now describe each of the
steps in more detail. The numbers inside the circles in Figure 6
correspond with the steps below.

1. The application invokes a method on the GAT object. For
sake of the example, let us assume that the method invoked
is copy, with the destination parameter
any://machineA.domain.com/testFile.

2. The dynamically generated Proxy class (see step 7 in Sec-
tion 4.1) is the actual Java object that implements the GAT
object API, in this case the File interface. The Proxy for-
wards a description of the invocation to the AdaptorInvoca-
tionHandler class.

3. The adaptor invocation handler first creates a NestedExcep-
tion object, which acts as a container for possible exceptions
the adaptors might throw. Next, the handler employs Java’s
reflection mechanism, and uses the description of the method
invocation that is provided by the proxy to forward the call to
the adaptors, until one succeeds (i.e., does not throw an ex-
ception). In the example in Figure 6, there are three adaptors
available: a local file adaptor, an adaptor for SSH, and one
for GridFTP.

4. The invocation handler invokes the requested method,copy
in our case, on the first adaptor. The handler can invoke the
copy method, because the adaptor extends the FileCPI class,
which in turn implements the File API. The FileCPI class
contains implementationsfor all methodsin the File inter-
face, although most are “dummy” implementations that just

throw a NotImplementedException. The file adaptors will
override some, but not necessarily all methods with their
own versions containing an actual implementation. Never-
theless, the adaptor invocation handler can always invoke the
requested method, as it is always implemented, either in the
CPI class or in the adaptor itself. The CPI is described in
more detail in Section 5.

5. The local adaptor throws anAdaptorNotApplicableExcep-
tion, as it determines that the destination URI contains a re-
mote hostname. The local adaptor cannot copy files to re-
mote hosts, and is therefore not applicable.

6. The adaptorInvocationHandler catches the exception, and adds
it to the nested exception it created earlier, in step 3. As ex-
plained in Section 3, the adaptor invocation handler always
catchesall exceptions and errors. Because the first adaptor
failed, the handler will now invoke the method on the second
adaptor (i.e., the SSH adaptor).

7. The SSH adaptor throws an exception, because the SSH dae-
mon on the remote site is not running.

8. This exception is caught by the invocation handler, and added
to the nested exception. Next, thecopymethod of the third
adaptor is invoked.

9. The GridFTP adaptor copies the file and returns normally.

10. The adaptor invocation handler returns the result value(if
any) to the Proxy class.

11. The Proxy class forwards the result to the application.

The adaptor invocation handler invokes the adaptors in the or-
der that is specified in the adaptor ordering policy, as described in
the previous section. However, for performance reasons, weim-
plemented an additional optimization. If an adaptor successfully
implemented an operation, the adaptor is moved to the front of the
ordered adaptor list. This is done during step 10 in the example
above. If the applications performs subsequent invocations on the
same object, the adaptor that succeeded last time will be tried first.
This optimization is effective when adaptors fail after performing
expensive operations, such as web service invocations. In some
cases, adaptors fail after a timeout. Using this optimization, this
overhead only occurs once, during the first invocation on a GAT
object.

5. THE ADAPTOR WRITING
FRAMEWORK

In this section, we describe the framework that the JavaGAT pro-
vides to facilitate adaptor writing. The framework consists of two
parts. The first part is the abstract Capability Providers Interface
(CPI), which is the interface used by the adaptors. The second part
is a set of generic high-level adaptors that provide additional func-
tionality on top of the real adaptors that bind to the grid middleware.
The adaptors are an important part of the JavaGAT system. They
implement the actual functionality that is defined by the JavaGAT
API. Adaptors typically consist of “glue code” that translates GAT
API requests into one or more grid middleware operations.

Because we consider JavaGAT adaptor writers equally important
as the grid application programmers, it is imperative that adaptor
writing is as easy as possible. Many different middleware systems
exist, and JavaGAT has to support different versions of those sys-
temssimultaneously. This becomes even more important because

the grid middleware changes so frequently. Adaptors therefore also
have to be modified frequently, and new adaptors have to be writ-
ten for new middleware. To facilitate the adaptor implementation,
JavaGAT provides as as much generic code in the CPI classes as
possible.

The CPI classes implement the interfaces specified in the Java-
GAT API, and provide code forall methodsthat are defined in the
API. Some methods contain code that actually implements there-
quired functionality. For instance, simple getter and setter methods
are typically implemented at the CPI level. All other methodim-
plementations just trowNotImplementedExceptions. Methods can
be overridden by the adaptors that extend the CPI classes as re-
quired. If methods that do not contain an actual implementation
are not overridden, JavaGAT’s intelligent dispatching mechanism
will catch theNotImplementedExceptions, and will automatically
select another adaptor.

JavaGAT Adaptors have to extend the CPI classes. Since the CPI
classes implement the corresponding JavaGAT API interfaces, the
adaptors automatically inherit this, and thus implement the GAT
API. All methods are already implemented in the CPI classes,so
adaptors do not have to implement the complete API. In fact, most
adaptors only implement a small fraction of the full API. Java-
GAT’s generic code in the CPI classes adds additional functional-
ity, and the intelligent dispatching mechanism fills in the remaining
blanks, by using other adaptors to implement the missing function-
ality.

Adaptors can have internal state, which can be saved between
invocations. The GridFTP adaptor, for instance, caches connec-
tions to the GridFTP servers between file operations. In somecases,
adaptors can return adaptor-specific handles (e.g., a ResourceBro-
ker can return a Job handle). In such cases, adaptors are responsible
for recognizing the handles that they returned, because theintelli-
gent dispatching mechanism could try different adaptors with the
handle. If an adaptor is called with an adaptor-specific handle that
does not belong to it, an error is thrown, allowing the intelligent
dispatching mechanism to select another adaptor. Eventually, the
correct adaptor will be executed.

The JavaGAT implementation comes with a full set of local adap-
tors that implement the complete API on a local system. This is
useful as an example for adaptor writers. Furthermore, it gives ap-
plication developers the possibility to test their application on their
local workstation or laptop, before it is deployed on the grid. Since
the debugging of distributed applications is notoriously difficult,
this is an important feature. Thanks to JavaGAT’s intelligent dis-
patching feature and the fact that the engine dynamically loads the
adaptors into the running program, deployment on the grid isal-
most trivial. No recompilation or reconfiguration is needed.

5.1 Grid I/O
One of the most important and widely used APIs of the GAT is

the Grid I/O API. We currently have many adaptors that implement
it. However, many middlewares only provide a subset of the func-
tionality that the JavaGAT API defines (e.g., many protocolsdo not
support third party copies, or copies of directories). Therefore, we
invested a lot of effort to provide us much functionality as possible
in a generic way at the CPI level. Below, we list some of the func-
tionality the JavaGAT grid I/O CPI implements. All generically
defined code can be overridden by an adaptor if a better or more
efficient implementation is available.

• All code that deals with the handling of URIs is generic, and
is implemented in the CPI.

• A file move operation can be implemented by a copy fol-

lowed by a delete of the original file.

• The file API provides several ways of listing files in a di-
rectory, calledlist andlistFiles. The first returns an array of
Strings that contain the file names, while the latter returnsan
array ofFile objects. TheFile CPI provides generic imple-
mentations of each of the two methods on top of the other
method. Therefore, an adaptor only has to implement either
list or listFiles, but not both. Most adaptors simply imple-
ment only thelist method.

• Java’sFile class, and the compatible JavaGATFile provide
methods to filter directory listings, usingFileFiltersandFile-
NameFilters. The code to do the filtering is implemented in
theFile CPI class.

• Operations that deal with directories can be implemented in
a generic way. TheFile CPI, for instance, provides a mecha-
nism to recursively delete a directory. JavaGAT implements
this by creating GATFile objects for each entry in a direc-
tory, using thelistFilesmethod described above. The created
File objects are normal GAT objects, and thus support intel-
ligent dispatching. The CPI can now simple invoke a normal
delete operation on each of the files. Any adaptor can be used
to perform the actual delete. Similarly, the JavaGAT CPI
provides implementations for copying and moving directo-
ries, and for themkdirsoperation that creates a sequence of
directories in one call.

5.2 Resource Management
With the resource management API, applications can, amongst

others, submit jobs to the grid. Before the job is submitted,a set
of input and application binary files can be pre-staged (copied to
the site where the job will run), while afterwards the files that are
produced by the application run can be post-staged (copied back to
the submission site). Many grid middlewares do provide thisfunc-
tionality in some way, but in many cases the support is not flexi-
ble enough for our needs. Sometimes only files can be staged in,
and not directories. In other cases, the middleware does notcreate
a special sandbox directory, so when multiple jobs are submitted
to the same machine, they may overwrite each others files. Also,
many systems assume that the files to be staged in reside at thesub-
mission site, while this is not always the case. Finally, middlewares
almost always assume that the compute elements share a filesystem
(e.g., using NFS) with a frontend system where the grid scheduler
is running, and staging files to a local disk of a compute element
is not possible. Nevertheless, this can be imperative for good per-
formance. JavaGAT implements all aforementioned featuresin a
generic way in the resource management CPI.

JavaGAT provides a mechanism that creates a sandbox on remote
machines. All application input files and directories are copied to
the sandbox directory before the job is started. The copy opera-
tions are done using JavaGAT’s file API, and thus automatically
use intelligent dispatching, and will exploit the functionality of all
available file adaptors. Because third party copies are supported by
the File API, source files can be located anywhere in the grid.They
could also be replicated. When the Job is finished, the outputfiles
are copied back using the same mechanism.

5.3 Security
The security CPI provides some generic functionality to cache

security information such as passwords and credentials. Further-
more, it provides support to retrieve credentials from a MyProxy
credential management service [6]. Finally, the JavaGAT security

CPI provides a mechanism to restrict the availability of security in-
formation to certain adaptors or remote machines. This is useful,
because some adaptors might not be trusted with certain security
information. Likewise, passwords should be restricted to aset of
trusted hosts in the grid. This mechanism is not present in the GAT
specification. However, some of our users (e.g., those who deal
with medical data) require this feature.

5.4 Information Services
With the information service API, GAT objects can be persis-

tently stored. Objects that support persistency are for instance files,
jobs and communication endpoints. To ensure that differentGAT
implementations and different language bindings can use each oth-
ers serialized objects, Advertisable objects are marshaled to XML.
The JavaGAT engine and the CPI implement the marshaling in a
generic way, using the Castor library [3]. For GAT objects that do
not have adaptor-specific state, the engine implements the marshal-
ing in a manner that is completely transparently for the adaptors.
This is often the case for files, where the only state typically is the
URI that contains the file’s address. Adaptors are responsible of
marshaling their own internal state, if they have any. The JavaGAT
engine offers convenient hooks to implement this.

5.5 Filling in the Blanks
We also provide some simple adaptors that add backup imple-

mentations for some functionality if no adaptor implementsit. Adap-
tors like this are typically added as the last entry in the adaptor or-
dering policies, so they are only selected if all else fails.For exam-
ple, we provide a File adaptor that only implements an inefficient
third-party copy, and nothing else. This adaptor uses GAT files
(and thus benefits from the intelligent dispatching) to implement
the copy. First, the file or directory is copied from the source host
to the local host. Next, another copy operation copies from the local
host to the destination machine in a second step. Although this is
not very efficient, we found that many JavaGAT users prefer a slow
copy over no copy at all. This is especially true for batch jobs and
production systems. A similar approach is taken for file streams. If
no adaptor can do remote streaming, JavaGAT features an adaptor
that copies a file to the local disk and streams it from there. This
method of providing additional functionality using generic adap-
tors that in turn use other adaptors as building blocks is possible
only because of the intelligent dispatching of grid operations.

5.6 Optimizing Special Cases
We can also exploit JavaGAT’s intelligent dispatching features to

increase application performance in special cases. This can be done
by writing a specialized adaptor that implements some operation in
a more efficient way. For example, we have an SSH File adaptor
for JavaGAT that uses the Jsch library [1]. However, we foundthat
the encryption of the channel is inefficient in this library.Although
this is not a problem for most file operations, for big file copies
this results in a performance problem. Therefore, we wrote avery
simple command-line SSH adaptor that can copy files if a native
command-line SSH client is installed. On most Unix systems this
is the case, and native SSH clients are available for Windowsas
well. Next, we can use the adaptor ordering policy mechanismto
make sure the JavaGAT engine tries the command-line SSH copy
adaptorbeforethe Jsch-based SSH adaptor. If no SSH client is in-
stalled, the command-line adaptor will fail, and the copy method
of the Jscj-based SSH adaptor will be invoked. The command-line
adaptor only overrides and implements the CPI’s copy operation.
For all other file methods, the original CPI methods that it throw
NotImplementedExceptionsare automatically inherited. If they are

Submission method time (seconds)
native globus-job-run 11.1
CoG kit 11.8
JavaGAT 12.6

Table 1: Submission time of a trivial job to a local cluster.

invoked, JavaGAT’s intelligent dispatching mechanism will auto-
matically select the Jsch-based SSH adaptor. In general, using this
mechanism, we can add specialized adaptors in that increaseper-
formance in special cases, without breaking existing functionality.

6. EVALUATION
In this section we evaluate the overhead that is introduced by in-

telligent dispatching and the other techniques described in this pa-
per. Furthermore, we discuss the successfulness of our approach, in
terms of application programmer and middleware developer adop-
tion of the JavaGAT.

6.1 Performance Evaluation
We argue that the overhead introduced by the techniques we de-

scribe here is insignificant, due to the typically high cost of grid
operations. We now provide some experimental results that sup-
port this claim. We ran our experiments on a dual-CPU / dual-core
2.4 GHz AMD Opteron DP 280, with 8 GB of memory, and 10
Gigabit/s Ethernet.

First, we ran a simple job submission test, that submits the exe-
cutable “/bin/hostname” to the local cluster, using the Globus toolkit
3.2 pre web services, and using SUN Grid Engine (SGE) as the lo-
cal cluster scheduler. The “hostname” command prints the name
of the compute element and only takes 12 milliseconds. No files
are pre-staged or post-staged. This therefore is a trivial job, and the
lower bound of job submission time. The measurements presented
in Table 1 show that even the submission of a trivial job already
takes 11 seconds to a local machine. If the destination is remote,
or if the newer Globus Toolkit version 4 that is based on WSRF is
used, the times become even higher (not shown). The overheadof
the JavaGAT is only 800 milliseconds, and this includes the time
for initializing the JVM, the JavaGAT engine, and loading 38adap-
tors. For realistic jobs, this overhead is insignificant.

We also performed micro benchmarks of the intelligent dispatch-
ing mechanism. Our test creates one million GAT File objects, and
measures how long this takes on average. Nine File adaptors are
installed, of which seven are actually applicable in this case. We
found that the creation of a new GAT object takes 1.3 millisec-
onds on average. This time includes the instantiation of seven GAT
adaptors, and checking the provided security information for each
adaptor (e.g, checking for a valid Globus proxy).

Subsequent invocations on the created GAT File object use Java-
GAT’s intelligent dispatching mechanism to forward the calls to
the adaptors. We measured that the invocation of an operation on
a GAT Object takes only 8 microseconds on our hardware. It is
clear that the overhead of intelligent dispatching, which is in the
microsecond range is insignificant for grid operations, which typi-
cally are in the second range.

6.2 Successfulness of our Approach
The successfulness of our approach is demonstrated by the large

number of adaptors that was successfully implemented for the Java-
GAT. For instance, for file access, JavaGAT has adaptors for local
files, GridFTP, RFT, FTP, SSH, SFTP, HTTP, HTTPS and SMB/-

CIFS. For resource management, the JavaGAT supports local fork-
ing, GRMS, Globus GRAM, SSH, prun, PBS, Sun Grid Engine
(SGE), ProActive, Integrade and Zorilla. Several of these adap-
tors were written by external groups, who confirm that the adaptor
writing framework that the JavaGAT provides is extremely useful.
This is also shown by the size of the adaptors. The SGE adaptor,
for instance contains only 422 lines of Java code (includingcom-
ments). The complete Globus GRAM adaptor needs only 1614
lines of code.

Furthermore, many applications were developed using the Java-
GAT. For instance, medical people at the VUMC hospital in Ams-
terdam were able to write applications that analyze MagnetoEn-
cephalography (MEG) scans on several different clusters simul-
taneously [13]. Physicists at the AMOLF institute are usingthe
JavaGAT to perform parallel Fourier transforms on mass spectrom-
etry data [22], transparently streaming files with different protocols
such as SFTP, SSH and GridFTP. A computational chemistry group
has used the JavaGAT to implement file browsing and experiment
data management on the grid. Computer scientists have used the
JavaGAT as a back-end for work-flow submissions and portals [12,
2], and linguists are using the JavaGAT to implement analysis of
specialist texts [8].

7. RELATED WORK
The GAT [10] is a language independent object-oriented specifi-

cation. This paper describes the Java reference implementation of
the GAT. However, other language bindings also exists, e.g., for C,
C++ and Python. The most important difference between the Java-
GAT and the other implementations of the specification is that the
JavaGAT uses intelligent dispatching, while the other implemen-
tations use static dispatching. Furthermore, the JavaGAT has an
additional steering interface, and an more user-friendly Java com-
patible file API.

The Java CoG Kit [11] uses an abstraction model to provide a
grid execution framework. The API provided by the CoG kit only
supports remote file access and job submission. An interesting fea-
ture of the CoG Kit is that it supports a form oflate binding. The
actual implementation of an API object is selected at run time, and
not at compile time. However, the application must explicitly spec-
ify which middleware is used, whereas JavaGAT can do this se-
lection process automatically. Moreover, a single adaptor(called
provider in the Java CoG) is selected for anentire object. We have
shown that the JavaGAT approach of using intelligent dispatching
is more flexible (see Section 4). Intelligent dispatching has several
key advantages, such as the ability to use different middlewares to
implement a single object, better portability, and the support for
fault tolerance.

An interesting new development is the standardization of the
Simple API for Grid Applications (SAGA) [16] by the Open Grid
Forum (OGF) [7]. Like GAT, SAGA is a high-level middleware-
independent API for grid applications. The API for SAGA is largely
based on the GAT and on the CoG kit abstraction model. A ref-
erence implementation for C++ already exists [17]. JavaGAT’s
intelligent dispatching mechanism heavily influenced the design
and implementation of the C++ reference implementation, which
currently already supports a simpler form of dynamic dispatching.
Moreover, our group has received funding to implement the Java
reference implementation for SAGA. We intend to reuse largeparts
of the JavaGAT engine, including the intelligent dispatching feature
described in this paper.

DRMAA [20] is an API specification for job submission and
control to distributed resource management systems, developed in
the context of OGF [7]. DRMAA is object-oriented and middle-

ware independent, like the GAT. However, DRMAA only deals
with resource management, while the GAT also deals with other
important issues, such as grid I/O, monitoring and information ser-
vices. Finally, in contrast to JavaGAT, DRMAA uses static binding
to a particular middleware. Nevertheless, DRMAA provides ause-
ful and important abstraction, and JavaGAT has adaptors that use
DRMAA to interface to cluster schedulers.

The GridRPC specification [19] defines a model and API for a
remote procedure call mechanism for grid environments. GridRPC
is specifically targeted for end-user applications, not middleware.
Two reference implementations for GridRPC exist, Ninf-G [21]
and NetSolve/GridSolve [23]. GridRPC uses static dispatching:
when an object is bound to a server, all calls to that object will
be performed at that particular server. We argue that intelligent dis-
patching is more flexible. An interesting framework for implement-
ing dispatching mechanisms, called PolyD, is presented in [14].
JavaGAT uses a similar mechanism, but adds intelligence to it, let-
ting the dispatching mechanismautomaticallyselect suitable adap-
tors.

8. CONCLUSIONS AND FUTURE WORK
We have introduced the JavaGAT: an environment providing an

object-oriented, high-level, and middleware-independent API to the
grid. We have described a novel technique, calledintelligent dis-
patching, used by the JavaGAT to integrate the heterogeneous and
incomplete functionality offered by current grid middlewares into
a simple and consistent API. With intelligent dispatching,the Java-
GAT can automatically select the best middleware for each individ-
ual grid operation. When a particular middleware fails, theJava-
GAT engine will automatically select alternative implementations
of the requested operation until one succeeds, providing transpar-
ent fault tolerance, and solving heterogeneity problems. In case all
available middleware implementations fail to provide a requested
operation, JavaGAT provides the application with a special, nested
exception, enabling detailed error analysis when needed. The over-
head of using intelligent dispatching is insignificant compared to
the cost of the grid operations.

We also have shown how JavaGAT provides a powerful frame-
work that allows grid middleware developers to quickly and effi-
ciently implement GAT bindings to their middleware system,with-
out unnecessary duplication of code. This way, grid researchers can
experiment with new middleware ideas without interfering with the
grid application programmers. The many middleware adaptors that
have been provided by third-party developers indicate the viability
of our approach.

We have demonstrated that the JavaGAT implementation as a
whole achieves functionality that grid application programmers re-
quire today. Several groups have implemented grid applications
using the JavaGAT, using the grid for production systems, despite
existing shortcomings of the underlying middleware. In thefuture,
we will also apply intelligent dispatching, nested exceptions, and
our adaptor development framework to the SAGA reference imple-
mentation for Java. As SAGA has been inspired by the GAT, it will
combine JavaGAT’s benefits described in this paper with an API
that will have been standardized within the Open Grid Forum.

9. ACKNOWLEDGMENTS
This work was carried out in the context of the Virtual Labora-

tory for e-Science project (www.vl-e.nl). This project is supported
by a BSIK grant from the Dutch Ministry of Education, Cultureand
Science (OC&W) and is part of the ICT innovation program of the
Ministry of Economic Affairs (EZ). This work has been supported

by the Netherlands Organization for Scientific Research (NWO)
grant 612.060.214 (Ibis: a Java-based grid programming environ-
ment). We kindly thank Niels Drost, Jason Maassen and Frank
Seinstra for all their help. The useful feedback of Alexander Beck-
Ratzka, Keith Cover and many other users of the JavaGAT imple-
mentation is greatly appreciated. We also like to thank the anony-
mous reviewers for their insightful and constructive comments.

10. REFERENCES
[1] JSch – Java Secure Channel Library.

http://www.jcraft.com/jsch.
[2] The AstroGrid Project. http://www.astrogrid.org.
[3] The Castor Project. http://www.castor.org.
[4] The GridLab project. http://www.gridlab.org.
[5] The Ibis Project. http://www.cs.vu.nl/ibis.
[6] The MyProxy credential management service.

http://grid.ncsa.uiuc.edu/myproxy.
[7] The Open Grid Forum (OGF). http://www.ogf.org.
[8] The TextGrid Project. http://www.textgrid.de.
[9] The Virtual Labs for E-Science Project (Vl-e).

http://www.vl-e.nl.
[10] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser,

T. Kielmann, A. Merzky, R. van Nieuwpoort, A. Reinefeld,
F. Schintke, T. Schütt, E. Seidel, and B. Ullmer. The Grid
Application Toolkit: Towards Generic and Easy Application
Programming Interfaces for the Grid.Proceedings of the
IEEE, 93(3):534–550, March 2005.

[11] K. Amin, G. von Laszewski, M. Hategan, R. Al-Ali,
O. Rana, and D. Walker. An abstraction model for a grid
execution framework.Journal of Systems Architecture: the
EUROMICRO Journal, 52(2):73–87, feb 2006.
ISSN:1383-7621.

[12] D. Churches, G. Gombas, A. Harrison, J. Maassen,
C. Robinson, M. Shields, I. Taylor, and I. Wang.
Programming Scientific and Distributed Workflow with
Triana Services.Concurrency & Computation: Practice &
Experience, 18(10):1021–1037, 2006.

[13] K. Cover, J. Verbrunt, J. de Munck, and B. van Dijk. Fitting a
single equivalent-current-dipole model to MEG data with
exhaustive search optimization is a simple, practical and very
robust method given the speed of modern computers. InNew
Frontiers in Biomagnetism, Proceedings of the 15th
International Conference on Biomagnetism, International
Congress Series No 1300, Vancouver, B.C., Canada, August
2006. Elevier B.V. ISBN-13:978-0-444-52885-8.

[14] A. Cunei and J. Vitek. PolyD: a flexible dispatching
framework. InProceedings of the 20th annual ACM
SIGPLAN conference on Object oriented programming,
systems, languages, and applications (OOPSLA’2005),
pages 487–503, San Diego, CA, USA, 2005. ACM Press
New York, NY, USA. ISSN:0362-1340.

[15] I. Foster. Globus toolkit version 4: Software for
service-oriented systems. InIFIP International Conference
on Network and Parallel Computing, pages 2–13.
Springer-Verlag LNCS 3779, 2006.

[16] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, G. von
Laszewski, C. Lee, A. Merzky, H. Rajic, and J. Shalf.
SAGA: A Simple API for Grid Applications. High-level
application programming on the Grid.Computational
Methods in Science and Technology, 12(1):7–20, 2006.

[17] H. Kaiser, A. Merzky, S. Hirmer, and G. Allen. The SAGA

C++ Reference Implementation. InLibrary-Centric Software
Design LCSD’06 workshop, Portland, Oregon, October 2006.

[18] R. Medeiros, W. Cirne, F. Brasileiro, and J. Sauve. Faults in
grids: why are they so bad and what can be done about it? In
Fourth International Workshop on Grid Computing
(Grid2003), pages 18–24, Phoenix, Arizona, nov 2003.

[19] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee,
and H. Casanova. The GridRPC API standardization at the
Grid Remote Procedure Call Working Group of the Global
Grid Forum, 2005. GGF proposed recommendation
(GFD-R.P 52).

[20] H. Rajic, R. Brobst, W. Chan, F. Ferstl, J. Gardiner, A. Haas,
B. Nitzberg, and J. Tollefsrud. Distributed Resource
Management Application API Specification 1.0 (DRMAA).
GFD.22, http://www.drmaa.org.

[21] Y. Tanaka, H. Takemiya, H. Nakada, and S. Sekiguchi.
Design, implementation and performance evaluation of
GridRPC programming middleware for a large-scale
computational Grid. InProceedings of the 5th IEEE/ACM
International Workshop on Grid Computing (Grid2004),
2004.

[22] Y. van der Burgt, I. Taban, M. Konijnenburg, M. Biskup,
M. Duursma, R. Heeren, A. Rompp, R. van Nieuwpoort, and
H. Bal. Parallel Processing of Large Datasets from
NanoLC-FTICR-MS Measurements.Journal of the
American Society of Mass Spectrometry, 18(1):152–161, oct
2006. PubMed ID: 17055738.

[23] A. YarKhan, K. Seymour, K. Sagi, Z. Shi, and J. Dongarra.
Recent Developments in GridSolve.International Journal of
High Performance Computing Applications (Special Issue:
Scheduling for Large-Scale Heterogeneous Platforms),
Robert, Y eds., 20(1), 2006. Sage Science Press.

